A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Learning properties of quantum states without the IID assumption. | LitMetric

Learning properties of quantum states without the IID assumption.

Nat Commun

Inria, ENS Lyon, UCBL, LIP, Lyon, France.

Published: November 2024

We develop a framework for learning properties of quantum states beyond the assumption of independent and identically distributed (i.i.d.) input states. We prove that, given any learning problem (under reasonable assumptions), an algorithm designed for i.i.d. input states can be adapted to handle input states of any nature, albeit at the expense of a polynomial increase in training data size (aka sample complexity). Importantly, this polynomial increase in sample complexity can be substantially improved to polylogarithmic if the learning algorithm in question only requires non-adaptive, single-copy measurements. Among other applications, this allows us to generalize the classical shadow framework to the non-i.i.d. setting while only incurring a comparatively small loss in sample efficiency. We leverage permutation invariance and randomized single-copy measurements to derive a new quantum de Finetti theorem that mainly addresses measurement outcome statistics and, in turn, scales much more favorably in Hilbert space dimension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11549401PMC
http://dx.doi.org/10.1038/s41467-024-53765-6DOI Listing

Publication Analysis

Top Keywords

input states
12
learning properties
8
properties quantum
8
quantum states
8
iid input
8
polynomial increase
8
sample complexity
8
single-copy measurements
8
states
5
learning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!