The common marmoset () is known for its highly vocal nature, displaying a diverse range of calls. Functional imaging in marmosets has shown that the processing of conspecific calls activates a brain network that includes fronto-temporal areas. It is currently unknown whether different call types activate the same or different networks. In this study, nine adult marmosets (four females) were exposed to four common vocalizations (phee, chatter, trill, and twitter), and their brain responses were recorded using event-related functional magnetic resonance imaging at 9.4 T. We found robust activations in the auditory cortices, encompassing core, belt, and parabelt regions, and in subcortical areas like the inferior colliculus, medial geniculate nucleus, and amygdala in response to these calls. Although a common network was engaged, distinct activity patterns were evident for different vocalizations that could be distinguished by a 3D convolutional neural network, indicating unique neural processing for each vocalization. Our findings also indicate the involvement of the cerebellum and medial prefrontal cortex in distinguishing particular vocalizations from others.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11735661 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0670-24.2024 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!