Despite its prevalence in studying the causal roles of different brain circuits in cognitive processes, electrical microstimulation often results in inconsistent behavioral effects. These inconsistencies are assumed to be due to multiple mechanisms, including habituation, compensation by other brain circuits, and contralateral suppression. Considering the presence of reinforcement in most experimental paradigms, we hypothesized that interactions between reward feedback and microstimulation could contribute to inconsistencies in behavioral effects of microstimulation. To test this, we analyzed data from electrical microstimulation of the frontal eye field of male macaques during a value-based decision-making task and constructed network models to capture choice behavior. We found evidence for microstimulation-dependent adaptation in saccadic choice, such that in stimulated trials, monkeys' choices were biased toward the target in the response field of the microstimulated site ( ). In contrast, monkeys showed a bias away from in non-stimulated trials following microstimulation. Critically, this bias slowly decreased as a function of the time since the last stimulation. Moreover, microstimulation-dependent adaptation was influenced by reward outcomes in preceding trials. Despite these local effects, we found no evidence for the global effects of microstimulation on learning and sensitivity to the reward schedule. By simulating choice behavior across various network models, we found a model in which microstimulation and reward-value signals interact competitively through reward-dependent plasticity can best account for our observations. Our findings indicate a reward-dependent compensatory mechanism that enhances robustness to perturbations within the oculomotor system and could explain the inconsistent outcomes observed in previous microstimulation studies. Electrical microstimulation has been used to study the causal contributions of certain brain areas or circuits to cognition and behavior. Nonetheless, the overall impact of microstimulation on behavior remains inconclusive, hinting at neural mechanisms that interact with experimental perturbation of neural activity. We hypothesized that this interaction could be driven by the reward feedback animals receive while performing tasks, either with or without external perturbations. Using computational modeling and data from microstimulation during a reward-dependent decision-making task, we found microstimulation and reward-value signals competitively interact within the oculomotor system. This interaction enhances the system's robustness to both internal and external perturbations. Our results have important implications for employing microstimulation in basic and clinical research.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1523/JNEUROSCI.2356-23.2024 | DOI Listing |
Nature
January 2025
Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA.
Accurate goal-directed behaviour requires the sense of touch to be integrated with information about body position and ongoing motion. Behaviours such as chewing, swallowing and speech critically depend on precise tactile events on a rapidly moving tongue, but neural circuits for dynamic touch-guided tongue control are unknown. Here, using high-speed videography, we examined three-dimensional lingual kinematics as mice drank from a water spout that unexpectedly changed position during licking, requiring re-aiming in response to subtle contact events on the left, centre or right surface of the tongue.
View Article and Find Full Text PDFHum Brain Mapp
December 2024
Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
Intracortical microstimulation (ICMS) is a method for restoring sensation to people with paralysis as part of a bidirectional brain-computer interface (BCI) to restore upper limb function. Evoking tactile sensations of the hand through ICMS requires precise targeting of implanted electrodes. Here we describe the presurgical imaging procedures used to generate functional maps of the hand area of the somatosensory cortex and subsequent planning that guided the implantation of intracortical microelectrode arrays.
View Article and Find Full Text PDFPhys Rev Res
December 2024
Departments of Biology and Mathematics and Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403, USA.
A crucial challenge in targeted manipulation of neural activity is to identify perturbation sites whose stimulation exerts significant effects downstream with high efficacy, a procedure currently achieved by labor-intensive and potentially harmful trial and error. Can one predict the effects of electrical stimulation on neural activity based on the circuit dynamics during spontaneous periods? Here we show that the effects of single-site micro-stimulation on ensemble activity in an alert monkey's prefrontal cortex can be predicted solely based on the ensemble's spontaneous activity. We first inferred the ensemble's causal flow based on the directed functional interactions inferred during spontaneous periods using convergent cross-mapping and showed that it uncovers a causal hierarchy between the recording electrodes.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA.
Tactile feedback from brain-controlled bionic hands can be partially restored via intracortical microstimulation (ICMS) of the primary somatosensory cortex. In ICMS, the location of percepts depends on the electrode's location and the percept intensity depends on the stimulation frequency and amplitude. Sensors on a bionic hand can thus be linked to somatotopically appropriate electrodes, and the contact force of each sensor can be used to determine the amplitude of a stimulus.
View Article and Find Full Text PDFJ Neurosurg
December 2024
Departments of1Neurological Surgery.
Precise anatomical implantation of a microelectrode array is fundamental for successful brain-computer interface (BCI) surgery, ensuring high-quality, robust signal communication between the brain and the computer interface. Robotic neurosurgery can contribute to this goal, but its application in BCI surgery has been underexplored. Here, the authors present a novel robot-assisted surgical technique to implant rigid intracortical microelectrode arrays for the BCI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!