Controlling excessive inflammation of acute wound is an effective means to shorten the healing time. Therefore, targeted control of the inflammatory response of the wound is a promising therapeutic strategy. In this study, paeoniflorin (Pae) was encapsulated in microspheres and combined with oxidized hyaluronic acid hydrogels to prepare the hydrogel loaded with Pae microspheres (Pae-MPs@OHA) to promote the healing of acute wounds in rats. The results demonstrated that the particle size of the Pae-MPs was 6.84 ± 0.51 μm, and the positive charge was 26.87 ± 1.51 mV. The uniform spherical structure of the Pae-MPs was observed by TEM. The Pae-MPs@OHA can maintain colloidal state in the range of 0.1-3.16 Hz. FTIR suggested that Pae could be effectively wrapped in MPs, and SEM indicated that the Pae-MPs@OHA had a uniform network pore structure. The Pae-MPs@OHA can realize the sustained release of Pae for 96 h. Biocompatibility experiments showed that the Pae-MPs@OHA hydrogels were safe and available. The Pae-MPs@OHA hydrogels can accelerate wound healing in rats. HE and masson staining suggested that the Pae-MPs@OHA could reduce inflammatory cell infiltration, promote re-epithelialization and collagen formation. The Pae-MPs@OHA could decrease the number of M1 and increase the number of M2 in macrophages, thus regulating the release of inflammatory factor TNF-α and IL-1β. The results of molecular docking and western blot results also confirmed that the Pae-MPs@OHA could reduce the expression of NF-κB, pNF-κB, NLRP3, ASC and pro-caspase-1. These findings suggest that the Pae-MPs@OHA has great potential for application in the treatment of inflammatory wound.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.137107 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!