Insoluble dietary fibers can be used as oleogelators to form oleogels via molecular self-assembly following chemical modification. However, the limitations of traditional chemical modifications and oleogel preparation methods significantly restrict their practical application. This study proposed a novel method to directly form edible oleogels using natural soybean insoluble fiber particles as oil-forming agents and water as a secondary fluid via the capillary suspension force between particles. The results showed that when the particle fraction was 15 % and the secondary fluid content was 0.2, a strong capillary suspension force could be formed to maintain the oil holding capacity of oleogels. The sedimentation coefficient analysis suggested that adding particles and secondary fluids significantly affected the oleogel stability. The polarity of the oils, as well as the ionic strength and pH of the secondary fluids, influenced the rheological properties of oleogels, which correlated with the interfacial tension between the secondary fluids and oils. Moreover, the stable oleogels showed their potential as excellent solid fat substitutes in the preparation of breads (specific volume = 2.029 ± 0.114 cm/g, weight loss = 12.2 ± 2.6 %, and hardness = 3.321 ± 0.055 N). This study highlighted that insoluble dietary fiber can form oleogels via capillary suspension, which is a relatively rapid and simple strategy. Additionally, it provided a solid foundation for the comprehensive utilization of soybean processing byproducts and the transformation of traditional food-specific oils and fats.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.137361 | DOI Listing |
Front Microbiol
December 2024
Oniris VetAgroBio, INRAE, SECALIM, Nantes, France.
Our study aims to assess the thermal inactivation of non-proteolytic type B spores in a plant-based fish and to evaluate the potential of alternative heat treatments at temperatures below the safe harbor guidelines established for vacuum-packed chilled products of extended durability. First, the heat resistance of the spore suspension was determined using capillary tubes in potassium phosphate buffer at 80°C. The D value was estimated to be 0.
View Article and Find Full Text PDFGels
December 2024
College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
In the oil dispersion of chitosan, the formation of a capillary bridge was triggered by adding a small amount of water to obtain an oleogel. With this method, the types of liquid oil and the ratio of oil/chitosan/water were explored to achieve an optimal oleogel. MCT performed best, followed by soybean oil, which was chosen for its edibility and cost.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
November 2024
School of Traditional Chinese Medicine, Capital Medical University Beijing 100069, China Beijing Key Laboratory of Traditional Chinese Medicine Collateral Disease Theory Research Beijing 100069, China.
This study rapidly identified and quantified the chemical components of the Wuzhuyu Decoction nanophase(WZYD-N) and suspension phase(WZYD-S) using ultra-high performance liquid chromatography coupled with triple quadrupole mass spectrometry(UPLC-QQQ-MS/MS). Based on preliminary pharmacodynamic experiments and network pharmacology analysis, the differential anti-inflammatory and analgesic activities of WZYD-N and WZYD-S were explored to understand their pharmacodynamic basis. WZYD-N and WZYD-S were separated by differential centrifugation-dialysis, and their particle size, Zeta potential, PDI, and morphology were characterized by dynamic light scattering and transmission electron microscopy.
View Article and Find Full Text PDFBiomater Adv
December 2024
Biomedical Engineering, The University of Melbourne, VIC 3010, Australia; The Graeme Clark Institute for Biomedical Engineering, The University of Melbourne, VIC 3010, Australia. Electronic address:
Sacrificial templating offers the ability to create interconnected pores within 3D printed filaments and to control pore morphology. Beta-tricalcium phosphate (TCP) bone tissue engineering (BTE) scaffolds were fabricated with multiscale porosity: (i) macropores from direct ink writing (DIW, a material extrusion 3D printing technique), (ii) micropores from oil templating, and (iii) smaller micropores from partial sintering. The hierarchically porous scaffolds possessed a total porosity of 58-70 %, comprising 54-63 % interconnected open pores.
View Article and Find Full Text PDFFood Res Int
November 2024
Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy.
Cryogel particles were obtained by freeze-drying and grinding hydrogel monoliths made from 20 % (w/w) whey protein isolate (WP) suspensions prepared at different pH (pH 4.8, 5.7, and 7.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!