Genetic and molecular mechanisms underlying nitrogen use efficiency in maize.

J Genet Genomics

State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding (MOE), Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China. Electronic address:

Published: November 2024

Nitrogen (N) is vital for crop growth and yield, impacting food quality. However, excessive use of N fertilizers leads to high agricultural costs and environmental challenges. This review offers a thorough synthesis of the genetic and molecular regulation of N uptake, assimilation, and remobilization in maize, emphasizing the role of key genes and metabolic pathways in enhancing N use efficiency (NUE). We summarize the genetic regulators of N transports for nitrate (NO) and ammonium (NH) that contribute to efficient N uptake and transportation. We further discuss the molecular mechanisms by which root system development adapts to N distribution and how N influences root system development and growth. Given the advancements in high-throughput microbiome studies, we delve into the impact of rhizosphere microorganisms on NUE and the complex plant-microbe interactions that regulate maize NUE. Additionally, we conclude with intricate regulatory mechanisms of N assimilation and remobilization in maize, involving key enzymes, transcription factors, and amino acid transporters. We also scrutinize the known N signaling perception and transduction mechanisms in maize. This review underscores the challenges in improving maize NUE and advocates for an integrative research approach that leverages genetic diversity and synthetic biology, paving the way for sustainable agriculture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jgg.2024.10.007DOI Listing

Publication Analysis

Top Keywords

genetic molecular
8
molecular mechanisms
8
assimilation remobilization
8
remobilization maize
8
root system
8
system development
8
maize nue
8
maize
6
genetic
4
mechanisms
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!