Antibiotic resistance poses a global crisis fuelled by widespread antibiotic use, particularly against Gram-negative bacteria like Klebsiella pneumoniae, a leading cause of hospital-acquired infections with high mortality rates. Urgent identification of effective drug targets is imperative, with a focus on metabolic pathways to inhibit bacterial growth. Targeting the crucial metabolic pathways of K. pneumoniae would be a more efficient way to prevent its growth and the diseases that it causes. The present study focused on inhibiting the UDP-N-acetylglucosamine--N-acetylmuramyl-(pentapeptide)pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (MurG) enzyme, which is a key enzyme in peptidoglycan biosynthesis pathway. A high throughput virtual screening was used to find possible lead molecules from Enamine -High-Throughput Screening Center library. The resulting high binding affinity ligands were further assessed for their drug-likeness and other pharmacokinetic properties. Based on these analyses, the three ligands Z95813755_1, Z324718246_1 and Z324718246_2 were selected for further molecular dynamic simulation studies. The molecular dynamic simulation results and MM/PBSA analysis predicted that both Z95813755_1 and Z324718246_2, molecules show higher binding affinity towards MurG. For the first time we are reporting potential candidate inhibitors against MurG from K. pneumoniae, providing new insights in management of multi drug resistant K. pneumoniae infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.resmic.2024.104257 | DOI Listing |
Res Microbiol
November 2024
Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India. Electronic address:
Antibiotic resistance poses a global crisis fuelled by widespread antibiotic use, particularly against Gram-negative bacteria like Klebsiella pneumoniae, a leading cause of hospital-acquired infections with high mortality rates. Urgent identification of effective drug targets is imperative, with a focus on metabolic pathways to inhibit bacterial growth. Targeting the crucial metabolic pathways of K.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2024
Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892.
spores are produced inside the cytosol of a mother cell. Spore surface assembly requires the SpoVK protein in the mother cell, but its function is unknown. Here, we report that SpoVK is a sporulation-specific, forespore-localized putative chaperone from a distinct higher-order clade of AAA+ ATPases that promotes the peptidoglycan glycosyltransferase activity of MurG during sporulation, even though MurG does not normally require activation during vegetative growth.
View Article and Find Full Text PDFAntibiotics (Basel)
March 2023
Department of Chemistry, Fribourg University, Chemin Du Musée 9, 1700 Fribourg, Switzerland.
In the context of the global health issue caused by the growing occurrence of antimicrobial resistance (AMR), the need for novel antimicrobial agents is becoming alarming. Inorganic and organometallic complexes represent a relatively untapped source of antibiotics. Here, we report a computer-aided drug design (CADD) based on a 'scaffold-hopping' approach for the synthesis and antibacterial evaluation of -Re(I) tricarbonyl complexes bearing clotrimazole (ctz) as a monodentate ligand.
View Article and Find Full Text PDFJ Biomol Struct Dyn
January 2024
Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India.
The nosocomial infection outbreak caused by remains a public health concern. Multi-drug resistant (MDR) strains of are rapidly spreading leading to a huge mortality rate because of the unavailability of promising antimicrobials. MurG glycotransferase [UDP-N-acetylglucosamine-N-acetylmuramyl (pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase] is located at the plasma membrane and plays a key role in murein (peptidoglycan) biosynthesis in bacteria.
View Article and Find Full Text PDFmBio
April 2021
Molecular Biotechnology, Institute of Biology, Leiden University, Leiden, The Netherlands
The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis () gene cluster. Here, we present the discovery of a cell wall enzyme that can substitute for MurG.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!