The porous and defective structure of biochar (BC) can accelerate surface electron transfer, promote the generation of more reactive oxygen species (ROS) by persulfate (PS), and effectively degrade organic pollutants in the soil. Electron transfer is a crucial link in this process, directly determining its oxidative degradation efficiency. In this study, using a novel strategy of enhancing electron transfer on the surface of BC by loading iron, three Fe-loaded BC activators (Fe-FeO@BC, FeO@BC and FeO@BC) were synthesized to support the oxidative remediation of benzo(a)pyrene (BaP, Model compound of PAHs)-contaminated soil by PS. The results showed that FeO@BC supported PS oxidation and remediation of BaP-contaminated soil had the best effect among the three BC-based activators, and the reuse effect was stable. Under the conditions of FeO@BC addition of 1.00 wt%, PS addition of 0.75 wt%, reaction temperature of 35 °C, and solid-liquid ratio of 1:2.5, the removal rate of BaP in the soil reached the maximum of 93.84% at 120 min, and the soil toxicity was significantly reduced after remediation. The defect structure, conductive magnetic particles, and active functional groups on the surface of FeO@BC were the key factors for activating PS to degrade BaP. With the combined action of the free radical pathway caused by ROS and the non-free radical pathway caused by O, electron transfer, and active functional groups, BaP was degraded to small molecules such as CO and HO, achieving rapid and efficient remediation of organic contaminated soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2024.143699DOI Listing

Publication Analysis

Top Keywords

electron transfer
16
oxidative remediation
8
pahs-contaminated soil
8
active functional
8
functional groups
8
radical pathway
8
pathway caused
8
soil
7
remediation
5
feo@bc
5

Similar Publications

Epoxides are versatile chemical intermediates that are used in the manufacture of diversified industrial products. For decades, thermochemical conversion has long been employed as the primary synthetic route. However, it has several drawbacks, such as harsh and explosive operating conditions, as well as a significant greenhouse gas emissions problem.

View Article and Find Full Text PDF

Calcination-Induced Tight Nano-Heterointerface for Highly Effective Eradication of Rib Fracture-Related Infection by Near-Infrared Irradiation.

ACS Appl Mater Interfaces

January 2025

School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.

Rib fracture-related infection is a challenging complication of thoracic trauma due to the difficulty of treating it with antibiotics alone and the need for a second operation to remove the infected fixator and sterilize the surrounding infected tissue. In this study, inspired by the photocatalytic performance of and ion release from silver-based materials, including AgPO and AgS, a hybrid AgPO-AgS heterojunction was prepared based on anion exchange and a one-step calcination process to design a nonantibiotic coating aimed at preventing and treating rib fracture-related infection with short-term 808 nm near-infrared irradiation. Calcination at 250 °C enhanced the inductive effect of the phosphate radical and led to the formation of a tight nanoheterogeneous interface between AgPO and AgS, thereby promoting interfacial electron transfer and reducing the recombination of photogenerated carriers.

View Article and Find Full Text PDF

The daily light-dark cycle is a recurrent and predictable environmental phenomenon to which many organisms, including cyanobacteria, have evolved to adapt. Understanding how cyanobacteria alter their metabolic attributes in response to subjective light or dark growth may provide key features for developing strains with improved photosynthetic efficiency and applications in enhanced carbon sequestration and renewable energy. Here, we undertook a label-free proteomic approach to investigate the effect of extended light (LL) or extended dark (DD) conditions on the unicellular cyanobacterium ATCC 51142.

View Article and Find Full Text PDF

The phonon inverse Faraday effect describes the emergence of a dc magnetization due to circularly polarized phonons. In this work we present a microscopic formalism for the phonon inverse Faraday effect. The formalism is based on time-dependent second order perturbation theory and electron phonon coupling.

View Article and Find Full Text PDF

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!