Genetically encoded inhibitors of Ca1 channels that operate via C-terminus-mediated inhibition (CMI) have been actively pursued. Here, we advance the design of CMI peptides by proposing a membrane-anchoring tag that is sufficient to link the inhibitory modules to the target channel as well as chemical and optogenetic modes of system control. We designed and implemented the constitutive and inducible CMI modules with appropriate dynamic ranges for the short and long variants of Ca1.3, both naturally occurring in neurons. Upon optical (near-infrared-responsive nanoparticles) and/or chemical (rapamycin) induction of FRB/FKBP binding, the designed peptides translocated onto the membrane via FRB-Ras, where the physical linkage requirement for CMI could be satisfied. The peptides robustly produced acute, potent, and specific inhibitions on both recombinant and neuronal Ca1 activities, including Ca influx-neuritogenesis coupling. Validated through opto-chemogenetic induction, this prototype demonstrates Ca channel modulation via membrane-assisted molecular linkage, promising broad applicability to diverse membrane proteins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.crmeth.2024.100898 | DOI Listing |
bioRxiv
December 2024
Department of Anatomy & Neurobiology, University of California at Irvine, CA, 92617, USA.
Activity-dependent synaptic accumulation of AMPA receptors (AMPARs) and subsequent long-term synaptic strengthening underlie different forms of learning and memory. The AMPAR subunit GluA1 amino-terminal domain is essential for synaptic docking of AMPAR during LTP, but the precise mechanisms involved are not fully understood. Using unbiased proteomics, we identified the epilepsy and intellectual disability-associated VGCC auxiliary subunit α2δ1 as a candidate extracellular AMPAR slot.
View Article and Find Full Text PDFChaos
December 2024
School of Mathematics and Statistics, Northwestern Polytechnical University, Xi'an 710129, China.
Int J Mol Sci
November 2024
Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
Glucocorticoids are known to influence hippocampal function, but their rapid non-genomic effects on specific neurons in the hippocampal trisynaptic circuit remain underexplored. This study investigated the immediate effects of glucocorticoids on CA1 and CA3 pyramidal neurons, and dentate gyrus (DG) granule neurons in rats using the patch-clamp technique. We found that a 5 min extracellular application of corticosterone significantly reduced action potential firing frequency in CA1 pyramidal neurons, while no effects were observed in CA3 or DG neurons.
View Article and Find Full Text PDFMol Brain
November 2024
Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
Understanding the mechanisms of synaptic plasticity is crucial for elucidating how the brain adapts to internal and external stimuli. A key objective of plasticity is maintaining physiological activity states during perturbations by adjusting synaptic transmission through negative feedback mechanisms. However, identifying and characterizing novel molecular targets orchestrating synaptic plasticity remains a significant challenge.
View Article and Find Full Text PDFTheranostics
October 2024
Department of Ultrasound, Chongqing Key Laboratory of Ultrasound Molecular Imaging, the Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China.
Sonogenetics is an advanced ultrasound-based neurostimulation approach for targeting neurons in specific brain regions. However, the role of sonogenetics in treating status epilepticus (SE) remains unclear. Here, we aimed to investigate the effects of ultrasound neurostimulation and MscL-G22S (a mechanosensitive ion channel that mediates Ca influx)-mediated sonogenetics (MG-SOG) in a mouse model of kainic acid (KA)-induced SE.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!