Exploring protein natural diversity in environmental microbiomes with DeepMetagenome.

Cell Rep Methods

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China. Electronic address:

Published: November 2024

Protein natural diversity offers a vast sequence space for protein engineering, and deep learning enables its detection from metagenomes/proteomes without prior assumptions. DeepMetagenome, a Python-based method, explores protein diversity through modules for training and analyzing sequence datasets. The deep learning model includes Embedding, Conv1D, LSTM, and Dense layers, with sequence feature analysis for data cleaning. Applied to metallothioneins from a database of over 146 million coding features, DeepMetagenome identified over 500 high-confidence metallothionein sequences, outperforming DIAMOND and CNN-based models. It showed stable performance compared to a Transformer-based model over 25 epochs. Among 23 synthesized sequences, 20 exhibited metal resistance. The tool also successfully explored the diversity of three additional protein families and is freely available on GitHub with detailed instructions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11705764PMC
http://dx.doi.org/10.1016/j.crmeth.2024.100896DOI Listing

Publication Analysis

Top Keywords

protein natural
8
natural diversity
8
deep learning
8
exploring protein
4
diversity
4
diversity environmental
4
environmental microbiomes
4
microbiomes deepmetagenome
4
protein
4
deepmetagenome protein
4

Similar Publications

Cell-Based Therapies in GI Cancers: Current Landscape and Future Directions.

Am Soc Clin Oncol Educ Book

January 2025

Department of Gastrointestinal Oncology, National Cancer Center Hospital East, Kashiwa, Japan.

Cell-based therapies have become integral to the routine clinical management of hematologic malignancies. Tumor-infiltrating lymphocyte (TIL) therapy has demonstrated efficacy in immunogenic solid tumors, such as melanoma. However, in the GI field, evidence supporting the clinical success of cell-based therapies is still awaited.

View Article and Find Full Text PDF

Autophagy has emerged as an essential quality control pathway in plants that selectively and rapidly removes damaged or unwanted cellular components to maintain cellular homeostasis. It can recycle a broad range of cargoes, including entire organelles, protein aggregates, and even invading microbes. It involves the de novo biogenesis of a new cellular compartment, making it intimately linked to endomembrane trafficking pathways.

View Article and Find Full Text PDF

Throughout history, we have looked to nature to discover and copy pharmaceutical solutions to prevent and heal diseases. Due to the advances in metabolic engineering and the production of pharmaceutical proteins in different host cells, we have moved from mimicking nature to the delicate engineering of cells and proteins. We can now produce novel drug molecules, which are fusions of small chemical drugs and proteins.

View Article and Find Full Text PDF

Distinct tau amyloid assemblies underlie diverse tauopathies but defy rapid classification. Cell and animal experiments indicate tau functions as a prion, as different strains propagated in cells cause unique, transmissible neuropathology after inoculation. Strain amplification requires compatibility of the monomer and amyloid template.

View Article and Find Full Text PDF

Bacterial type IV secretion systems (T4SSs) are widespread nanomachines specialized in the transport across the cell envelope of various types of molecules including mobile genetic elements during conjugation. Despite their prevalence in Gram-positive bacteria, including relevant pathogens, their assembly and functioning remain unknown. This study addresses these gaps by investigating VirB8 proteins, known to be central components of conjugative T4SSs in Gram-positive bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!