Genome-wide identification of the Dof gene family: How it plays a part in mediating cold stress response in Prunus mume.

Plant Physiol Biochem

State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China. Electronic address:

Published: December 2024

AI Article Synopsis

  • - This study investigates the Dof (DNA binding with a finger) transcription factor gene family in Prunus mume, focusing on their gene structure, phylogenetic relationships, and expression patterns, revealing 24 members divided into three subgroups.
  • - Findings indicate that PmDof genes are located on various chromosomes, with specific genes involved in abiotic stress responses, particularly cold stress, as demonstrated by qRT-PCR analysis.
  • - Overexpressing certain PmDofs (PmDof10/11/20) leads to enhanced cold resistance, suggesting their potential role in improving plant resilience to low temperatures.

Article Abstract

DNA binding with a finger transcription factor (Dof) takes part in several plant physiological activities such as seed germination, flowering time, cold and drought resistance. Although the function, molecular phylogeny and expression pattern of Dof genes in Prunus mume was not clear yet. Here, the gene structure, motif, chromosome location and phylogenetic relationship of the Dof gene family in Prunus species was explored. We identified 24 members of the Dof gene family from P. mume, which were divided into 3 different subgroups. All these PmDof genes can be mapped to the pseudochromosome. Only one pair of tandem duplication genes are located in Chr3, whereas 8 pairs of segmentally duplicated PmDof genes located in Chr1, Chr2, Chr4, Chr5, and Chr7. Motif and gene structure analysis showed that each group had a similar conservative motif and similar exon/intron composition. Cis-acting elements analysis indicate that PmDofs may be involved in regulating abiotic stress response. Gene expression patterns showed that most PmDofs genes were specifically expressed in different tissues and at different stages. We next found that PmDofs genes display an obvious expression preference or specificity in cold stress response according to qRT-PCR analysis. We further observe a great cold resistance in PmDof10/11/20 OE lines, they showed lower electrolyte leakage rate, MDA content and higher soluble sugar/protein, POD/SOD/proline content than WT after -5 °C 6h freezing treatment. This research offers fresh perspectives on the development of PmDofs, enhancing our comprehension of the structure and role of plant Dof gene families.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2024.109215DOI Listing

Publication Analysis

Top Keywords

dof gene
16
gene family
12
stress response
12
cold stress
8
prunus mume
8
gene structure
8
pmdof genes
8
genes located
8
pmdofs genes
8
gene
7

Similar Publications

Soil salinity poses a significant environmental challenge for the growth and development of blueberries. However, the specific mechanisms by which blueberries respond to salt stress are still not fully understood. Here, we employed a comprehensive approach integrating physiological, metabolomic, and transcriptomic analyses to identify key metabolic pathways in blueberries under salt stress.

View Article and Find Full Text PDF

Background: Conserved non-coding sequences (CNS) are islands of non-coding sequences conserved across species and play an important role in regulating the spatiotemporal expression of genes. Identification of CNS provides valuable information about potentially functional genomic elements, regulatory regions, and helps to gain insights into the genetic basis of crop agronomic traits.

Results: Here, we comprehensively analyze CNS in maize, by comparing the genomes of maize inbred line B73 (Zea mays ssp.

View Article and Find Full Text PDF

A wheat phytohormone atlas spanning major tissues across the entire life cycle provides novel insights into cytokinin and jasmonic acid interplay.

Mol Plant

January 2025

National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Although numerous studies have focused on the specific organs or tissues at different development stages or under various abiotic and biotic stress, our understanding of the distribution and relative abundance of phytohormones throughout the entire life cycle of plant organs and tissues remains insufficient. Here, we present a phytohormone atlas resource covering the quantitative analysis of eight major classes of phytohormones, comprising a total of 40 hormone-related compounds, throughout the complete life cycle of wheat. In combination with transcriptome analysis, we established a Wheat Phytohormone Metabolic Regulatory Network (WPMRN).

View Article and Find Full Text PDF

Light plays an important role in determining the L-ascorbate (AsA) pool size in plants, primarily through the transcriptional regulation of AsA metabolism-related genes. However, the specific mechanism of transcriptional induction responsible for light-dependent AsA biosynthesis remains unclear. In this study, we used a promoter sequence containing light-responsive motifs from GDP-L-galactose phosphorylase 2 (RrGGP2), a key gene involved in AsA overproduction in Rosa roxburghii fruits, to identify participating transcription factors.

View Article and Find Full Text PDF

[Identification and expression profiling of Dof transcription factor family in Aesculus chinensis].

Zhongguo Zhong Yao Za Zhi

November 2024

School of Pharmacy, Heilongjiang University of Chinese Medicine Harbin 150040, China Jiamusi College, Heilongjiang University of Chinese Medicine Jiamusi 154007, China.

Aesculus chinensis is an important medicinal and horticultural plant. Its dried mature seeds, known as "Suoluozi", are a well-known traditional Chinese medicine. Aescins are its main active components, possessing multiple pharmacological activities such as anti-inflammatory and anti-exudative effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!