Inhibition of coreopsin against α-amylase/α-glucosidase and synergy with acarbose.

Food Chem

The College of Chemistry, Changchun Normal University, Changchun 130032, China. Electronic address:

Published: February 2025

Coreopsin is a flavonoid from Coreopsis tinctoria. The inhibition of coreopsin and synergy with acarbose against α-amylase (PPA) or α-glucosidase (SCG) were explored. As a result, coreopsin exhibited stronger inhibition on PPA/SCG than that of acarbose. Combination of coreopsin (4.11 μM) with acarbose (132.77 μM) had significant synergistic effect on PPA, while combination of coreopsin (5.76 μM) and acarbose (121.7 μM) had significant synergy on SCG. Coreopsin, acarbose and acarbose-coreopsin inhibited PPA in mixed-type mode. Acarbose competitively inhibited SCG, whereas coreopsin and acarbose-coreopsin inhibited SCG in mixed-type mode. Fluorescence analysis conformed that coreopsin could synergize with acarbose by increasing the binding ability of acarbose to PPA/SCG. Compared with acarbose or coreopsin, acarbose-coreopsin complexes resulted in more conformational changes of PPA/SCG, revealing that the complexes had stronger inhibitory ability than acarbose or coreopsin alone. The detail binding information of coreopsin, acarbose or acarbose-coreopsin to PPA /SCG was revealed by computer simulation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2024.141610DOI Listing

Publication Analysis

Top Keywords

acarbose
12
acarbose coreopsin
12
coreopsin
11
inhibition coreopsin
8
synergy acarbose
8
combination coreopsin
8
scg coreopsin
8
coreopsin acarbose
8
acarbose acarbose-coreopsin
8
acarbose-coreopsin inhibited
8

Similar Publications

Background: A drug cocktail targeting different processes of aging was tested in an aging mouse model of Alzheimer's disease (AD) neuropathologic change as an intervention to improve behaviors corresponding to cognitive dysfunction in AD.

Method: A cocktail of acarbose/rapamycin/phenylbutyrate or a control treatment was administered (medicated vs. non-medicated chow) chronically to 22 months-old mice that received viral vector injections to induce amyloid and tau pathology in the hippocampus at 24 months of age.

View Article and Find Full Text PDF

The direct and indirect inhibition of proinflammatory adipose tissue macrophages by acarbose in diet-induced obesity.

Cell Rep Med

December 2024

Medical Research Center, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Department of Gastroenterology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China; Immunology Research Center for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China; Beijing Laboratory of Oral Health, Capital Medical University School of Basic Medicine, Beijing 100069, China; Beijing Key Laboratory of Tolerance Induction and Organ Protection in Transplantation, Beijing Friendship Hospital, Beijing 100050, China. Electronic address:

Inflammation is critical for obesity and obesity-induced insulin resistance (IR). In this study, we reveal the function and mechanism of acarbose on adipose tissue macrophage (ATM)-mediated inflammation in obesity and obesity-induced IR. First, acarbose enhances the abundance of propionic acid-producing Parasutterella, therefore indirectly inhibiting the survival and proinflammatory function of M1-like ATMs via GPR43.

View Article and Find Full Text PDF

Carthamus tinctorius L. (Safflower) is widely used in traditional Japanese, Korean, Chinese, Arabian, and Persian herbal medicine to treat metabolic diseases. This study aimed to characterize C.

View Article and Find Full Text PDF

Quinoline-thiosemicarbazone-1,2,3-triazole-acetamide derivatives as new potent α-glucosidase inhibitors.

Sci Rep

December 2024

Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.

In this work, a novel series of quinoline-thiosemicarbazone-1,2,3-triazole-aceamide derivatives 10a-n as new potent α-glucosidase inhibitors was designed, synthesized, and evaluated. All the synthesized derivatives 10a-n were more potent than acarbose (positive control). Representatively, (E)-2-(4-(((3-((2-Carbamothioylhydrazineylidene)methyl)quinolin-2-yl)thio)methyl)-1H-1,2,3-triazol-1-yl)-N-phenethylacetamide (10n), as the most potent entry, with IC = 48.

View Article and Find Full Text PDF

Semisynthesis of Nocarterphenyl A and Its Analogues.

J Nat Prod

December 2024

State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.

-Terphenyl compounds are known to possess a diverse range of biological activities, making the synthesis of novel -terphenyl derivatives a significant research objective. In this study, we report the first synthesis of nocarterphenyl A (), characterized by a thiazole-fused -terphenyl framework. Furthermore, we synthesized 18 additional analogs, including the naturally occurring compound 5-methoxy-4,7-bis(4-methoxyphenyl)benzo[]thiazol-6-ol (), employing a similar synthetic approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!