Micro- and nanostructured surfaces offer the potential to enhance two-phase heat transfer. However, the mechanisms behind these enhancements are not well-understood due to insufficient diagnostic methods, leading to reliance on trial-and-error surface development. We introduce in situ boroscopy to investigate microscale bubble dynamics during flow boiling nucleation and subsequent flow regime development. This method was applied in saturated flow boiling experiments within chemically etched aluminum and copper tubes. Although the surfaces have self-similar surface structures, our findings revealed varied heat transfer coefficient enhancements, with increases of up to 391% on aluminum and 41% on copper. Using boroscopy, we identified key mechanisms of heat transfer enhancement. We further used mercury porosimetry to determine the impact of pore size distribution on thermal performance. The boroscopy technique introduced here not only elucidates the underlying processes of flow boiling heat transfer enhancement but also has potential applications for the study of other two-phase phenomena.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546817 | PMC |
http://dx.doi.org/10.1126/sciadv.adp8632 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!