AI Article Synopsis

Article Abstract

Confinement of reactants within nanoscale spaces of low-dimensional materials has been shown to provide reorientation of strained reactants or stabilization of unstable reactants for synthesis of molecules and tuning of chemical reactivity. While few studies have reported chemistry within zero-dimensional pores and one-dimensional nanotubes, organic reactions in confined spaces between two-dimensional materials have yet to be explored. Here, we demonstrate that reactants confined between atomically thin sheets of graphene or hexagonal boron nitride experience pressures as high as 7 gigapascal, which allows the propagation of solvent-free organic reactions that ordinarily do not occur under standard conditions. Specifically, we show that cyclodehydrogenation of hexaphenylbenzene without catalysts as a proof of concept and oxidative polymerization of dopamine into sheet-like crystalline structure are enabled by the effective high pressure experienced by the reactants between the graphene layers. Our results demonstrate a facile, general approach for performing high-pressure chemistry based on confinement of reactants within two-dimensional materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546812PMC
http://dx.doi.org/10.1126/sciadv.adp9804DOI Listing

Publication Analysis

Top Keywords

organic reactions
12
confinement reactants
8
two-dimensional materials
8
reactants
6
pressure enabled
4
enabled organic
4
reactions confinement
4
confinement layers
4
materials
4
layers materials
4

Similar Publications

Mechanistic insights into carbonate radical-driven reactions: Selectivity and the hydrogen atom abstraction route.

J Hazard Mater

December 2024

Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China.

Carbonate radical (CO) is inevitably produced in advanced oxidation processes (AOPs) when addressing real-world aqueous environments, yet it often goes unnoticed due to its relatively lower reactivity. In this study, we emphasized the pivotal role of CO in targeting the elimination of contaminants by contrasting it with conventional reactive oxygen species (ROSs) and assessing the removal of sulfamethazine (SMT). Similar to singlet oxygen (O), CO shows a preference for electron-rich organic compounds.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) have been recognised as potential biomarkers due to their specific expression patterns in different biological tissues and their changes in expression under pathological conditions. MicroRNA-122 (miR-122) is a vertebrate-specific miRNA that is predominantly expressed in the liver and plays an important role in liver metabolism and development. Dysregulation of miR-122 expression is associated with several liver-related diseases, including hepatocellular carcinoma and drug-induced liver injury (DILI).

View Article and Find Full Text PDF

Cathode-mediated electrochemical conversion of phenol to benzoquinone in wastewater: High yield rate and low energy consumption.

Water Res

December 2024

Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China. Electronic address:

Selective conversion of organic pollutants in wastewater into value-added chemicals is a promising strategy for sustainable water management. Electrochemical processes offer attractive features of precise control over reaction pathway to achieve desired products, however, the traditional anode-mediated processes still face challenges of over-oxidation by the inevitably formed of hydroxyl radical (HO). Herein, we proposed a new cathode-mediated approach for selective conversion of phenol to p-benzoquinone (p-BQ) through peroxymonosulfate (PMS) activation.

View Article and Find Full Text PDF

Effects of straw amendment on the bioavailability of selenite in soil and its mechanisms.

Ecotoxicol Environ Saf

December 2024

College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China. Electronic address:

Dissolved organic matter (DOM) released by straw returning for decomposition interacts with selenium (Se) in soil, which affects the speciation distribution of Se and its bioavailability. However, the relative mechanisms involved are slightly understood. This study investigated the effects of straw-derived DOM on two levels of exogenous selenite (low-Se and high-Se treatments) in two types of soil with distinct pH.

View Article and Find Full Text PDF

Probing Methylmercury Photodegradation by Different Fractions of Natural Organic Matter in Water: Degradation Kinetics and Mercury Isotope Fractionation Characteristics.

Environ Pollut

December 2024

Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Department of Chemistry & Biochemistry, Florida International University, Miami, Florida, 33199, United States.

Recent advancements in mercury (Hg) isotopic fractionation research have evolved from conceptual demonstrations to practical applications. However, few studies have focused on revealing fractionation fingerprinting for aqueous methylmercury (MeHg) photodegradation due to its sensitivity to natural organic matter (NOM). Here, the impact of NOM fractions with varying chemical properties on MeHg photodegradation kinetics and Hg isotope fractionation characteristics was investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!