We analyzed the evolution of extreme annual surface air temperature and rainfall on Earth, based on the recurrence rate of record-breaking events, and found the highest recurrence rates for record-high annual temperatures in the tropics, as opposed to the polar regions with the fastest warming. Both recurrence rates and the global surface area fraction with daily mean surface air temperatures exceeding 30° and 40°C provide further evidence for extremely hot years becoming more common and widespread. A similar analysis for precipitation highlighted some regions with more record-high annual total precipitation and others with record-low annual precipitation typically associated with drought. A multimodel ensemble of 306 runs with global climate models [Coupled Model Intercomparison Project phase 6 (CMIP) Shared Socioeconomic Pathways 2-45 (SSP2-45)] reproduced the statistics of record-breaking high temperatures, but there were some differences for the reanalysis precipitation record-breaking recurrence rates. The global climate model simulations suggested a slightly altered geographical pattern for record-breaking annual precipitation recurrence rates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11546845PMC
http://dx.doi.org/10.1126/sciadv.ado3712DOI Listing

Publication Analysis

Top Keywords

recurrence rates
20
surface air
12
record-breaking recurrence
8
air temperature
8
record-high annual
8
rates global
8
annual precipitation
8
global climate
8
recurrence
6
precipitation
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!