Objective: The pathophysiological role of the small conductance calcium-activated potassium (SK) channels in human ventricular myocytes remains unclear. Experimental studies have reported upregulation of in pathological states, potentially contributing to ventricular arrhythmias. In heart failure (HF) patients, the upregulation of SK channels could be an adaptive physiological response to shorten the action potential duration (APD) under conditions of reduced repolarization reserve. In this work, we aimed at uncovering the contribution of SK channels to ventricular repolarization in failing myocytes.
Methods: We extended an in silico electrophysiological model of human ventricular failing myocytes by including a representation of the SK channel activity. To calibrate the maximal SK current conductance (G ), we simulated action potentials (APs) at different pacing frequencies and matched the changes in AP duration induced by SK channel inhibition or activation to available experimental data.
Results: The optimal value obtained for G was 4.288 μ S/ μF in mid-myocardial cells, and 6.4 μS/ μF for endocardial and epicardial cells. The simulated SK block-induced effects were consistent with experimental evidence. 1-D simulations of a transmural ventricular fiber indicated that SK channel block may prolong the QT interval and increase the transmural dispersion of repolarization, potentially increasing the risk of arrhythmia in HF.
Conclusion: Our results highlight the importance of considering the SK channels to improve the characterization of HF-induced ventricular remodeling. Simulations across various scenarios in 0-D and 1-D scales suggest that pharmacological SK channel inhibition could lead to adverse effects in failing ventricles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2024.3495027 | DOI Listing |
Am J Physiol Heart Circ Physiol
December 2024
Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
Missense mutations in calmodulin (CaM)-encoding genes are associated with life-threatening ventricular arrhythmia syndromes. Here, we investigated a role of cardiac K channel dysregulation in arrhythmogenic long QT syndrome (LQTS) using a knock-in mouse model heterozygous for a recurrent mutation (p.N98S) in the gene (Calm1).
View Article and Find Full Text PDFBehav Brain Funct
December 2024
Department of Pharmacology, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan.
The large-conductance calcium- and voltage-activated potassium (BK) channels, encoded by the KCNMA1 gene, play important roles in neuronal function. Mutations in KCNMA1 have been found in patients with various neurodevelopmental features, including intellectual disability, autism spectrum disorder (ASD), or attention deficit hyperactivity disorder (ADHD). Previous studies of KCNMA1 knockout mice have suggested altered activity patterns and behavioral flexibility, but it remained unclear whether these changes primarily affect immediate behavioral adaptation or longer-term learning processes.
View Article and Find Full Text PDFCell Biol Toxicol
December 2024
Department of Urology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, 100700, P.R. China.
The intraprostatic inflammatory infiltrate is characterized by Th1 CD4 T cells, and its molecular mechanism is not well defined. This study explored the mechanisms responsible for the alteration of Th1/Th17 differentiation of CD4 T cells in chronic non-bacterial prostatitis (CNP). CNP rats were induced by the administration of testosterone and 17β-estradiol.
View Article and Find Full Text PDFPurpose: To assess efficacy and safety of URO-902, an investigational gene therapy expressing the α subunit of the large-conductance Ca-activated K channel, in a phase 2a placebo-controlled trial in women with overactive bladder (OAB).
Materials And Methods: Women, 40‒79 years, with OAB and urge urinary incontinence (UUI) who were refractory to OAB medications were randomized to single-dose URO-902 24 and 48 mg or placebo administered by intradetrusor injection via cystoscopy under local anesthesia. Efficacy endpoints included change from baseline to week 12 in mean daily micturitions, urgency episodes, UUI episodes, and patient-reported outcomes.
PLoS One
December 2024
The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
Colitis is a complex multifactorial disease with an unknown aetiology that mainly manifests as chronic refractory colon transmission disorders. Smooth muscle, the main source of colon transmission power, consists of not only smooth muscle cells (SMCs) but also PDGFRα+ cells that mediate smooth muscle relaxation and ICCs that mediate contraction. PDGFRα+ cells and their unique small conductance Ca2+-activated K (SK3) channels are crucial in regulating colonic transit by exerting inhibitory effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!