The stiffness of cells and of their nuclei is a biomarker of several pathological conditions. Current measurement methods rely on invasive physical probes that yield one or two stiffness values for the whole cell. However, the internal distribution of cells is heterogeneous. We propose a framework to estimate maps of intracellular and intranuclear stiffness inside deforming cells from fluorescent image sequences. Our scheme requires the resolution of two inverse problems. First, we use a novel optical-flow method that penalizes the nuclear norm of the Hessian to favor deformations that are continuous and piecewise linear, which we show to be compatible with elastic models. We then invert these deformations for the relative intracellular stiffness using a novel system of elliptic PDEs. Our method operates in quasi-static conditions and can still provide relative maps even in the absence of knowledge about the boundary conditions. We compare the accuracy of both methods to the state of the art on simulated data. The application of our method to real data of different cell strains allows us to distinguish different regions inside their nuclei.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TMI.2024.3494050 | DOI Listing |
Langmuir
January 2025
CNNFM Lab, School of Mechanical Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563 Tehran, Iran.
This study investigates the impact of cell dynamics on mixing efficiency within a microfluidic droplet, emphasizing the relationship between cell motion, deformability, and resultant asymmetry in velocity and concentration fields. Simulations were conducted for droplets containing encapsulated cells at varying Peclet numbers ( = 100-800) and coupling constants ( = 0.0025, 0.
View Article and Find Full Text PDFStem Cells Transl Med
January 2025
Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, ON, Canada M5G 0A4.
Disruption of developmental processes affecting the fetal lung leads to pulmonary hypoplasia. Pulmonary hypoplasia results from several conditions including congenital diaphragmatic hernia (CDH) and oligohydramnios. Both entities have high morbidity and mortality, and no effective therapy that fully restores normal lung development.
View Article and Find Full Text PDFAndrology
January 2025
Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
Objectives: Acetylated tubulin is a hallmark of flagellar stability in spermatozoa, and studies have demonstrated the ability of CDYL to function as a tubulin acetyltransferase in spermatozoa. Of note, germline conditional knockout of Cdyl can lead to asthenoteratozoospermia and infertility in male mice. However, the role of CDYL gene in human fertility remains uncharacterized.
View Article and Find Full Text PDFGround Water
January 2025
School of Earth Sciences, University of Western Australia, Perth, Australia.
In simulations of groundwater flow through dipping aquifers, layers of model cells are often "deformed" to follow the top and bottom elevations of the aquifers. When this approach is used in MODFLOW, adjacent cells within the same model layer are vertically offset from one another, and the standard conductance-based (two-point) formulation for flow between cells does not rigorously account for these offsets. The XT3D multi-point flow formulation in MODFLOW 6 is designed to account for geometric irregularities in the grid, including vertical offsets, and to provide accurate results for both isotropic and anisotropic groundwater flow.
View Article and Find Full Text PDFAdv Exp Med Biol
January 2025
Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
Recent evidence has revealed that cancer is not solely driven by genetic abnormalities but also by significant metabolic dysregulation. Cancer cells exhibit altered metabolic demands and rewiring of cellular metabolism to sustain their malignant characteristics. Metabolic reprogramming has emerged as a hallmark of cancer, playing a complex role in breast cancer initiation, progression, and metastasis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!