The establishment of reproductive barriers such as postzygotic ybrid ncompatibility (HI) remains the key to speciation. Gene duplication followed by differential functionalization has long been proposed as a major model underlying HI, but little supporting evidence exists. Here, we demonstrate that a newborn F-box gene, , of the nematode specifically inactivates an essential phosphoglucomutase encoded by in its sister species and their hybrids. Zygotic expression of specifically depletes SHLS-1, but not SHLS-1, in approximately 40 min starting from gastrulation, causing embryonic death. is one of thirty-three paralogues emerging from a recent surge in F-box gene duplication events within , all of which are evolving under positive selection. undergoes turnover even among populations. Differential expansion of F-box genes between the two species could reflect their distinctive innate immune responses. Collectively, we demonstrate how recent duplication of genes involved in protein degradation can cause incidental destruction of targets in hybrids that leads to HI, providing an invaluable insight into mechanisms of speciation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11573670PMC
http://dx.doi.org/10.1073/pnas.2418037121DOI Listing

Publication Analysis

Top Keywords

f-box gene
12
newborn f-box
8
species hybrids
8
gene duplication
8
gene
5
gene blocks
4
blocks gene
4
gene flow
4
flow selectively
4
selectively degrading
4

Similar Publications

Multi-locus genome wide association study uncovers genetics of fresh seed dormancy in groundnut.

BMC Plant Biol

December 2024

Center of Excellence in Genomics & Systems Biology (CEGSB) and Centre for Pre-breeding Research (CPBR), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.

Pre-harvest sprouting (PHS) in groundnut leads to substantial yield losses and reduced seed quality, resulting in reduced market value of groundnuts. Breeding cultivars with 14-21 days of fresh seed dormancy (FSD) holds promise for precisely mitigating the yield and quality deterioration. In view of this, six multi-locus genome-wide association study (ML-GWAS) models alongside a single-locus GWAS (SL-GWAS) model were employed on a groundnut mini-core collection using multi season phenotyping and 58 K "Axiom_Arachis" array genotyping data.

View Article and Find Full Text PDF

A frameshift mutation in resolves the growth versus defense dilemma in rice.

Proc Natl Acad Sci U S A

December 2024

State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China.

CRISPR-Cas9 genome editing systems have revolutionized plant gene functional studies by enabling the targeted introduction of insertion-deletions (INDELs) via the nonhomologous end-joining (NHEJ) pathway. Frameshift-inducing INDELs can introduce a premature termination codon and, in other instances, can lead to the appearance of new proteins. Here, we found that mutations in the rice jasmonate (JA) signaling gene by CRISPR-Cas9-based genome editing did not affect canonical JA signaling.

View Article and Find Full Text PDF

In green plants, the chloroplast is responsible for light energy transition and organic assimilation. However, the molecular mechanisms underlying chloroplast development in horticultural crops remain unclear. Here, four-dimensional data-independent acquisition-based proteomic profiling identified 1,727 differentially expressed proteins between "Zhongshu 4" (ZS4) and () leaves, a considerable proportion of which were down-regulated chloroplast proteins.

View Article and Find Full Text PDF

Molecular Functional and Transcriptome Analysis of Overexpression from Zicaitai ( var. ).

Plants (Basel)

November 2024

Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.

B-box transcription factors (TFs) in plants are essential for circadian rhythm regulation, abiotic stress responses, hormonal signaling pathways, secondary metabolism, photomorphogenesis, and anthocyanin formation. Here, by blasting the gene sequence, we identified a total of 18 genes from five distinct species (, , , , and ). The gene is most closely linked to the gene based on phylogeny and protein sequence similarities.

View Article and Find Full Text PDF

Delivery of FBXO6 with highly branched poly(β-amino ester)s to modulate the inflammatory environment for the treatment of osteoarthritis.

J Control Release

December 2024

Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou City 310016, China; Key Laboratory of Mechanism Research and Precision Repair of Orthopedic Trauma and Aging Diseases of Zhejiang Province, Zhejiang 310016, China. Electronic address:

Osteoarthritis (OA) is a chronic joint disease characterized by the progressive degradation of articular cartilage. Delivering functional genes to chondrocytes to modulate the inflammatory environment offers a promising approach to treating OA. However, the dense extracellular matrix (ECM) in the OA microenvironment and the rapid clearance of naked nucleic acids from synovial fluid present significant challenges.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!