A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phytosterols as inhibitors of New Delhi metallo-β-lactamase (NDM-1): an in silico study. | LitMetric

The global emergence of New Delhi metallo-β-lactamase-1 (NDM-1) poses a formidable challenge to antibiotic therapy, as it confers resistance to a wide range of β-lactam antibiotics. This study aims to identify potential inhibitors of NDM-1 and thereby restore the effectiveness of the current antibiotics. Employing a comprehensive computational approach integrating molecular docking and molecular dynamics (MD) simulations, a library of phytosterols was screened to identify promising candidates for inhibiting NDM-1 activity. Using the binding energy of meropenem, a frontline carbapenem antibiotic, as a reference, avenasterol, brassicasterol, and stigmasterol emerged as top phytosterol candidates for further investigation. Subsequent MD simulations confirmed the stability of NDM-1 complexes with avenasterol and stigmasterol over the simulation period, indicating their potential efficacy. These findings suggest that avenasterol and stigmasterol may effectively inhibit NDM-1 activity, warranting validation through in vitro and in vivo studies. Furthermore, these phytosterols hold promise as lead compounds for developing novel NDM-1 inhibitors. Their natural origin and potential inhibitory activity against NDM-1 offer compelling avenues for developing alternative antibacterial therapies to combat multidrug-resistant infections. This study underscores the utility of computational methods in drug discovery and highlights the potential of phytosterols as valuable candidates for addressing antibiotic resistance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11030-024-11020-6DOI Listing

Publication Analysis

Top Keywords

ndm-1
8
ndm-1 activity
8
avenasterol stigmasterol
8
phytosterols
4
phytosterols inhibitors
4
inhibitors delhi
4
delhi metallo-β-lactamase
4
metallo-β-lactamase ndm-1
4
ndm-1 silico
4
silico study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!