An electrochemiluminescence (ECL) detection system is presented integrated with a bipolar electrode system for sensitive cancer diagnosis. In order to achieve the highest electrical conductivity and redox-active surface area, MXene was chosen as the material for the bipolar electrode. As part of the detection process, the anodic pole of the bipolar electrode was modified with the receptor tyrosine kinase like orphan receptor 1 (ROR1) antibody, followed by an immunoassay using the ROR1 antibody-modified Ag triangle that was identified as significantly enhancing ECL. We measured the ECL of luminol using the anode pole of BPE as an analytical signal in the presence of HO. Additionally, 3D-printed microchannels were used to fabricate the BPE system, to reduce the quantity of sample required. It has been shown that the present immunosensors are low-cost and sensitive in detecting types of cancer, with an extended linear range of 10 fg mL to 1 µg mL in the analysis of synthetic samples and achieving an accuracy of ~ 90% in diagnosing ten unknown real samples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-024-06815-1 | DOI Listing |
Biomed Eng Online
December 2024
Department of Clinical Physiology, Motion Analysis Center, University Hospital of Toulouse, Hôpital de Purpan, Toulouse, France.
Background: Stroke is the leading cause of acquired motor deficiencies in adults. Restoring prehension abilities is challenging for individuals who have not recovered active hand opening capacities after their rehabilitation. Self-triggered functional electrical stimulation applied to finger extensor muscles to restore grasping abilities in daily life is called grasp neuroprosthesis (GNP) and remains poorly accessible to the post-stroke population.
View Article and Find Full Text PDFBiomed Phys Eng Express
December 2024
Biomechatronics Laboratory Mechatronics Department, University of Sao Paulo, Av Prof Mello Moraes 2331, Cidade Universitaria, 05508-030 Sao Paulo-SP, Sao Paulo, 05508-900, BRAZIL.
Characterization of the electroencephalography (EEG) signals related to motor activity, such as alpha- and beta-band motor event-related desynchronizations (ERDs), is essential for Brain Computer Interface (BCI) development. Determining the best electrode combination to detect the ERD is crucial for the success of the BCI. Considering that the EEG signals are bipolar, this involves the choice of the main and reference electrodes.
View Article and Find Full Text PDFJ Neurophysiol
December 2024
Center for Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, USA.
Surface electromyography () is useful for studying muscle function and controlling prosthetics, but crosstalk from nearby muscles often limits its effectiveness. High-density surface EMG () improves spatial resolution, allowing for the isolation of in the densely packed forearm muscles. This study assessed for localizing and evaluated the impact of spatial filters on crosstalk reduction.
View Article and Find Full Text PDFClin Neurophysiol
December 2024
Human Neuroscience Group, Centre for Neuroscience and Neuromodulation, Institute for Medical Research, University of Belgrade, Serbia.
Objectives: Associative memory (AM) declines due to healthy aging as well as in various neurological conditions. Standard transcranial electrical stimulation (tES) protocols show inconclusive facilitatory effects on AM, often lacking function specificity and stimulation focality. We tested the effectiveness of high-density electrode montage delivering anodal theta oscillatory-modulated transcranial direct current stimulation (HD-Theta-otDCS) over the left posterior parietal cortex (PPC), aiming to target AM in a spatially focused and function-specific manner.
View Article and Find Full Text PDFAnal Chem
December 2024
National Centre for Sensor Research, School of Chemical Sciences, Dublin City University, Dublin 9 D09 V209, Ireland.
Wirefree, or bipolar electrochemistry, is advancing key fields, including (nano)materials, human health, and energy. Central to these applications is an understanding of the potential distribution induced in the bipolar electrode, BPE. Here, the impact of the electric field distribution is reported for the wirefree deposition of the conducting polymer, poly(3,4-ethylenedioxythiophene), PEDOT, in the absence of deliberately added electrolytes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!