Pathological aggregation of essentially dissociated Transthyretin (TTR) monomer proteins, driven by misfolding and self-interaction, is associated with Transthyretin amyloidosis (ATTR) disease. The TTR monomer proteins consist of several fragments that tend to self-aggregate. Recent experimental studies showed that the sequence of residues TTR plays an important role in self-aggregation. However, the mechanisms underlying the misfolding and aggregation of the TTR monomers are still unknown. In this study, we used microsecond molecular dynamics simulations to investigate the misfolding and self-assembly of TTR Octamers. We also investigated E92P and V94P mutants for comparative analysis. The analysis indicates that hydrophobic interactions and π-π stacking patterns play important roles in reducing the β-sheet content in the V94P and E92P mutants. Additionally, our findings reveal the conformational transition of TTR octamer from closed β-barrel, open β-barrel to the β-bilayer aggregation. We further elucidate the dynamic mechanism of the transition from intermediate states to stable states. Overall, our research may contribute to the development of drug design to combat fibrous amyloid fibrous diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jcim.4c01464DOI Listing

Publication Analysis

Top Keywords

conformational transition
8
transition ttr
8
ttr monomer
8
monomer proteins
8
ttr
7
physical driving
4
driving forces
4
forces conformational
4
ttr proline
4
proline mutations
4

Similar Publications

Proteins often harness extensive motions of domains and subunits to promote their function. Deciphering how these movements impact activity is key for understanding life's molecular machinery. The enzyme adenylate kinase is an intriguing example for this relationship; it ensures efficient catalysis by large-scale domain motions that lead to the enclosure of the bound substrates ATP and AMP.

View Article and Find Full Text PDF

Dynamic control of DNA circuit functionality is essential for constructing chemical reaction networks (CRNs) that implement complex functions. The triplex has been utilized for dynamically regulating the diverse functionalities of DNA circuits due to its distinctive pH responsiveness. However, it is challenging for triplexes to independently regulate the functionality of DNA circuits, as various triplexes were often required for DNA circuits to function in complex environments, which adds complexity to the design and control of dynamic circuits.

View Article and Find Full Text PDF

Structure and function of a near fully-activated intermediate GPCR-Gαβγ complex.

Nat Commun

January 2025

Department of Molecular Biosciences, University of South Florida, 4202 E Fowler Ave, Tampa, FL, 33620, USA.

Unraveling the signaling roles of intermediate complexes is pivotal for G protein-coupled receptor (GPCR) drug development. Despite hundreds of GPCR-Gαβγ structures, these snapshots primarily capture the fully activated complex. Consequently, the functions of intermediate GPCR-G protein complexes remain elusive.

View Article and Find Full Text PDF

The aggregation of α-synuclein is crucial to the development of Lewy body diseases, including Parkinson's disease and dementia with Lewy bodies. The aggregation pathway of α-synuclein typically involves a defined sequence of nucleation, elongation, and secondary nucleation, exhibiting prion-like spreading. This study employed Raman spectroscopy and machine learning analysis, alongside complementary techniques, to characterize the biomolecular changes during the fibrillation of purified recombinant wild-type α-synuclein protein.

View Article and Find Full Text PDF

Controlling the motion of molecular machines to influence higher-order structures is well-established in biological systems but remains a significant challenge for synthetic analogs. Herein, we aim to harness the mechanical switching of switchable molecular tweezers to modulate their self-assembly and produce stimuli-responsive organogels. We report a series of terpy(Pt-salphen) molecular tweezers functionalized with alkyl chains that act as low-molecular-weight gelators (LMWGs) in their open conformation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!