This study explores a novel approach to obtaining 3D printed strain sensors, focusing on how changing the printing conditions can produce a different piezoresistive response. Acrylonitrile butadiene styrene (ABS) filled with different weight concentrations of carbon nanotubes (CNTs) was printed in the form of dog bones via fused filament fabrication (FFF) using two different raster angles (0-90°). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) in TUNA mode (TUNA-AFM) were used to study the morphological features and the electrical properties of the 3D printed samples. Tensile tests revealed that sensitivity, measured by the gauge factor (G.F.), decreased with increasing filler content for both raster angles. Notably, the 90° orientation consistently showed higher sensitivity than the 0° orientation for the same filler concentration. Creep and fatigue tests identified permanent damage through residual electrical resistance values. Additionally, a cross-shaped sensor was designed to measure two-dimensional deformations simultaneously, which is applicable in the robotic field. This sensor can monitor small and large deformations in perpendicular directions by tracking electrical resistance variations in its arms, significantly expanding its measuring range.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547783 | PMC |
http://dx.doi.org/10.3390/nano14211761 | DOI Listing |
Int J Biol Macromol
January 2025
School of Materials & Chemistry Architecture, Anhui Agricultural University, Anhui Healthy Sleep Home Furnishings Engineering Research Center, Hefei 230036, China. Electronic address:
Carbon aerogels, characterized by their high porosity and superior electrical performance, present significant potential for the development of highly sensitive pressure sensors. However, facile and cost-effective fabrication of biomass-based carbon aerogels that concurrently possess high sensitivity, high elasticity, and excellent fatigue resistance remains a formidable challenge. Herein, a piezoresistive sensor with a layered network microstructure (BCNF-rGO-CS) was successfully fabricated using bamboo nanocellulose fiber (BCNF), chitosan (CS), and graphene oxide (GO) as raw materials.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Joint International Research Laboratory of Information Display and Visualization, School of Electronic Science and Engineering, Southeast University, Nanjing 210096, China.
Flexible thin-film pressure sensors have garnered significant attention due to their applications in industrial inspection and human-computer interactions. However, due to their ultra-thin structure, these sensors often exhibit lower performance, including a narrow pressure response range and low sensitivity, which constrains their further application. The most commonly used microstructure fabrication methods are challenging to apply to ultra-thin functional layers and may compromise the structural stability of the sensors.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.
The proliferation of flexible pressure sensors has generated new demands for high-sensitivity and low-cost sensors. Here, we propose an elegant strategy to address this challenge by taking a ridge-mimicking, gradient-varying, spatially ordered microstructure as the sensing layer, with laser processing and interdigitated electrodes as the upper and lower electrode layers. Simultaneously, the entire structure is encapsulated with polyimide (PI) tape for protection, and the fabrication process is relatively feasible, facilitating easy scaling.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Electronics and Information, Qingdao University, Qingdao 266071, China.
3D multifunctional wearable piezoresistive sensors have aroused extensive attention in the fields of motion detection, human-computer interaction, electronic skin, etc. However, current research mainly focuses on improving the foundational performance of piezoresistive sensors, while many advanced demands are often ignored. Herein, a 3D piezoresistive sensor based on rGO@C-ZIF-67@PU is fabricated via high temperature carbonization and a solvothermal reduction method.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China.
Polyurethane sponge is frequently selected as a substrate material for constructing flexible compressible sensors due to its excellent resilience and compressibility. However, being highly hydrophilic and flammable, it not only narrows the range of use of the sensor but also poses a great potential threat to human safety. In this paper, a conductive flexible piezoresistive sensor (CHAP-PU) with superhydrophobicity and high flame retardancy was prepared by a simple dip-coating method using A-CNTs/HGM/ADP coatings deposited on the surface of a sponge skeleton and modified with polydimethylsiloxane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!