The application of hydrogen flooding was recently shown to be a simple and effective approach for improved layer differentiation and interface determination during secondary ion mass spectrometry (SIMS) depth profiling of thin films, as well as an approach with potential in the field of quantitative SIMS analyses. To study the effects of hydrogen further, flooding of H molecules was compared to reactions with atomic H on samples of pure metals and their alloys. H was introduced into the analytical chamber via a capillary, which was heated to approximately 2200 K to achieve dissociation. Dissociation of H up to 30% resulted in a significant increase in the intensity of the metal hydride cluster secondary ions originating from the metallic samples. Comparison of the time scales of possible processes provided insight into the mechanism of hydride cluster secondary ion formation. Cluster ions presumably form during the recombination of the atoms and molecules from the sample and atoms and molecules adsorbed from the gas. This process occurs on the surface or just above it during the sputtering process. These findings coincide with those of previous mechanistic and computational studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11547559PMC
http://dx.doi.org/10.3390/nano14211687DOI Listing

Publication Analysis

Top Keywords

hydride cluster
12
secondary ion
12
effects hydrogen
8
metal hydride
8
cluster ions
8
ion mass
8
mass spectrometry
8
hydrogen flooding
8
cluster secondary
8
atoms molecules
8

Similar Publications

Two-component flavin-dependent monooxygenases are of great interest as biocatalysts for the production of pharmaceuticals and other relevant molecules, as they catalyze chemically important reactions such as hydroxylation, epoxidation and halogenation. The monooxygenase components require a separate flavin reductase, which provides the necessary reduced flavin cofactor. The tryptophan halogenase Thal from Streptomyces albogriseolus is a well-characterized two-component flavin-dependent halogenase.

View Article and Find Full Text PDF

The geometrical structure, stability, electronic properties, and hydrogen storage capabilities of a titanium-doped B cluster was calculated using density functional theory computations. The results show that the TiB cluster is predicted to be stable under near-ambient conditions based on an ab initio molecular dynamic simulation. The transition state analysis found that the H molecule can dissociate on the TIB cluster surface to form a hydride cluster.

View Article and Find Full Text PDF

Thermal Decomposition of Core-Shell-Structured RDX@AlH, HMX@AlH, and CL-20@AlH Nanoparticles: Reactive Molecular Dynamics Simulations.

Nanomaterials (Basel)

November 2024

Institute for Computation in Molecular and Materials Science, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.

The reactive molecular dynamics method was employed to examine the thermal decomposition process of aluminized hydride (AlH) containing explosive nanoparticles with a core-shell structure under high temperature. The core was composed of the explosives RDX, HMX, and CL-20, while the shell was composed of AlH. It was demonstrated that the CL-20@AlH NPs decomposed at a faster rate than the other NPs, and elevated temperatures could accelerate the initial decomposition of the explosive molecules.

View Article and Find Full Text PDF

Unusual metallic state in superconducting A15-type LaH.

Natl Sci Rev

December 2024

State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China.

Hydride superconductors continue to fascinate the communities of condensed matter physics and material scientists because they host the promising near room-temperature superconductivity. Current research has concentrated on the new hydride superconductors with the enhancement of the superconducting transition temperature ( ). The multiple extreme conditions (high pressure/temperature and magnetic field) will introduce new insights into hydride superconductors.

View Article and Find Full Text PDF

By hydrogenating carbon dioxide to value-added products such as methanol, heterogeneous catalysts can lower greenhouse gas emissions and generate alternative liquid fuels. The most common commercial catalyst for the reduction of CO to methanol is Cu/ZnO/AlO, where ZnO improves conversion and selectivity toward methanol. The structure of this catalyst is thought to be Zn oxy(hydroxyl) overlayers on the nanometer scale on Cu.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!