Elucidating the intrinsic relationship between disease and mitochondrial viscosity is crucial for early diagnosis. However, current mitochondrial viscosity fluorescent probes are highly dependent on mitochondrial membrane potential (MMP) and are sensitive to other mitochondrial microenvironment parameters. To address these issues, a mitochondria-targeting MMP-independent and viscosity exclusive near-infrared (NIR) fluorescent probe, ACR-DMA, was developed. ACR-DMA consists of thiophene acetonitrile as the skeleton and viscosity-sensitive unit, a pyridinium cation for the mitochondria-targeting group, and a benzyl bromide subunit for mitochondrial immobilization. It is very sensitive to viscosity and shows significant "turn-on" fluorescence behavior at 710 nm with a more than 150-fold fluorescence intensity increase. Furthermore, ACR-DMA can be firmly immobilized in mitochondria and can monitor viscosity changes induced by nystain, monensin, and lipopolysaccharide. Additionally, it was successfully used to visualize mitochondrial viscosity changes resulting from tumors, inflammation, and drug-induced acute kidney injury, revealing the relationship between viscosity and disease both and . ACR-DMA is expected to be a promising candidate for diagnosing mitochondrial viscosity-related diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4tb01785dDOI Listing

Publication Analysis

Top Keywords

mitochondrial viscosity
12
mitochondrial
8
mitochondrial membrane
8
fluorescent probes
8
viscosity changes
8
viscosity
7
membrane potential-independent
4
potential-independent near-infrared
4
near-infrared fluorescent
4
probes viscosity-exclusive
4

Similar Publications

Vitrification is a conventional and mature method for embryo cryo-preservation, but ice crystals formed during the vitrification process can damage embryos. HPC has the property of forming a high-viscosity gel under low-temperature conditions, so it can be added to vitrification solutions to investigate whether it improves the negative impact of vitrification on embryos. The results showed that the addition of HPC (50 μg/ml) to the vitrification solution significantly increased the post-warming survival rate of sheep morula embryos.

View Article and Find Full Text PDF

This paper presents the development of near-infrared (NIR) fluorescent probes, and , engineered from hemicyanine dyes with 1,8-naphthalic and rhodamine derivatives for optimized photophysical properties and precise mitochondrial targeting. Probes and exhibit absorption peaks at 737 nm and low fluorescence in phosphate-buffered saline (PBS) buffer. Notably, their fluorescence intensities, peaking at 684 () and 702 nm (), increase significantly with viscosity, as demonstrated through glycerol-to-PBS ratio experiments.

View Article and Find Full Text PDF

Since death is an inevitable phenomenon, exploring cell deaths holds importance. During this process, the cellular microenvironment within cells such as pH, polarity, viscosity etc alter. One such microenvironment, viscosity elevates during different cell deaths.

View Article and Find Full Text PDF

Construction of a mitochondrial-targeting near-infrared fluorescent probe for detection of viscosity changes in type 2 diabetes mellitus and nonalcoholic steatohepatitis.

Talanta

December 2024

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China. Electronic address:

The intracellular viscosity plays a pivotal role as a physicochemical factor and an important indicator of organelles performance. Abnormal changes in subcellular viscosity are often associated with cellular malfunction and various diseases. Nonalcoholic steatohepatitis (NASH) is the most common liver disease related with type 2 diabetes mellitus (T2DM), and both are linked to aberrant mitochondrial viscosity.

View Article and Find Full Text PDF

A mitochondria-targeted fluorescent probe based on an anti-diffusion strategy for in situ imaging of fatty liver, inflammation and cancer.

Talanta

December 2024

State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, 210023, PR China; Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake/ Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, 223300, PR China. Electronic address:

Abnormal mitochondrial viscosity is closely associated with a wide range of diseases and cellular dysfunction. It is crucial to develop fluorescent probes for precisely monitoring changes of mitochondrial viscosity in the detection and treatment of associated diseases. However, mitochondria-targeted fluorescent probes currently faced off-target problems because their high water-solubility could hinder the accurate detection of mitochondrial viscosity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!