Extracellular vesicles (EVs) play an important role in cell-cell communication, carrying bioactive molecules including DNA. EV-associated DNA (EV-DNA) has created enormous interest in the field of biomarkers, particularly related to liquid biopsy. However, its analysis is challenging due to the nanoscale structure of EVs, the low abundance of EV-DNA, and surrounding biogenetic debate. Therefore, novel protocols to enhance the accurate detection of EV-DNA are essential to study its role in normal physiology and disease states. Here, we provide two protocols for confirming the presence of EV-DNA from biological samples. In the first protocol, ultrathin sectioning of EVs is combined with immunogold labeling to detect the presence of double-stranded (ds) DNA within the EV lumen using transmission electron microscopy (TEM). In the second protocol, whole-mount EV immunogold labeling allows detailed morphological analysis of EVs and their surface-associated DNA. Using TEM imaging, we have demonstrated that cancer-cell-derived individual EVs exhibit simultaneous positivity for dsDNA and the EV surface protein tetraspanin 9. We believe that this method can be used to label any proteins of interest inside as well as on the surface of EVs. This can aid in the characterization of single EVs and in the identification and verification of EV-associated biomarkers. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: EV isolation from cell-culture-conditioned medium, EV embedding, ultrathin sectioning, labeling, and imaging Basic Protocol 2: Whole-mount immunolabeling of EV-DNA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602948PMC
http://dx.doi.org/10.1002/cpz1.70047DOI Listing

Publication Analysis

Top Keywords

transmission electron
8
electron microscopy
8
ultrathin sectioning
8
immunogold labeling
8
protocol whole-mount
8
basic protocol
8
evs
7
dna
5
ev-dna
5
analyzing extracellular
4

Similar Publications

This study details the synthesis of a novel ternary nanocomposite composed of MnFeO, FeVO, and modified zeolite, achieved through a two-step process. The initial step involved the hydrothermal synthesis of the MnFeO/FeVO composite, followed by its application onto modified zeolite using ultrasonic waves. The synthesized nanocomposite was thoroughly characterized using a range of analytical techniques.

View Article and Find Full Text PDF

This study investigated the ameliorative effects of Yinchen lipid-lowering tea (YCLLT) on Non-alcoholic fatty liver disease (NAFLD), the specific mechanism involved was also studied. We modeled hepatocellular steatosis with HepG2 cells and intervened with different concentrations of YCLLT-containing serum. Lipid deposition was assessed by oil red O staining and AdipoR1 expression was analyzed by Western blot.

View Article and Find Full Text PDF

β-Carotene (βC), a natural carotenoid, is the most important and effective vitamin A precursor, known also for its antioxidant properties. However, its poor water solubility, chemical instability, and low bioavailability limit its effectiveness as an orally delivered functional nutrient. Nanoparticle encapsulation improves βC's bioaccessibility by enhancing its stability and solubility.

View Article and Find Full Text PDF

Metal-organic framework (MOF) nanoparticles have attracted widespread attention as lubrication additives due to their tunable structures and surface effects. However, their solid lubrication properties have been rarely explored. This work introduces the positive role of moisture in solid lubrication in the case of a newly described Ti-based MOF (COK-47) powder.

View Article and Find Full Text PDF

Background: One of the main issues facing public health with microbial infections is antibiotic resistance. Nanoparticles (NPs) are among the best alternatives to overcome this issue. Silver nanoparticle (AgNPs) preparations are widely applied to treat multidrug-resistant pathogens.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!