Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The realization of 3D patterned metal layers with manipulable surface wettability has significant potential, especially in integrating microelectronics with weather resistance and multifunctional liquid manipulation. However, developing a facile and efficient method to bring it to fruition remains a great challenge. In this work, we proposed a novel 3D selective metallization strategy that combines stereolithography 3D printing with laser-induced selective metallization (LISM). Utilizing 355 nm UV or 1064 nm lasers, this strategy can prepare 3D conductive copper patterns (or circuits) with controlled wettability on various 3D-printed resin parts. The copper layer surface prepared LISM formed microstructures similar to the papillae on the surface of a lotus leaf, and it spontaneously exhibited superhydrophobicity (156.6°) after aging in the air at room temperature. Superhydrophobic 3D circuits with self-cleaning, corrosion-resistant, and anti-condensation performance were successfully fabricated. By further treating the copper layer with a 355 nm UV laser, we realized the transformation of the superhydrophobic copper layer to a superhydrophilic state, enabling us to prepare high-precision superhydrophilic patterns or channels. A 3D self-driven flow channel was fabricated to successfully realize 3D liquid manipulation and small-scale chemical experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4mh00756e | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!