Despite their apparent simplicity, the helium hydride ion (HeH) and its analogues with heavier noble gas (Ng) atoms present intriguing challenges due to their unusual electronic structures and distinct ground-state heterolytic bond dissociation profiles. In this work, we employ modern valence bond calculations and the interference energy analysis to investigate the nature of the chemical bond in NgH (Ng = He, Ne, Ar). Our findings reveal that the energy well formation in their ground-state potential energy curves is driven by a reduction in kinetic energy caused by quantum interference, identical to cases of homolytic bond dissociation. However, clear differences in bonding situation emerge: in HeH and ArH, electron charge transfer leads to Ng-H covalent bonds, while in NeH, a preferred Ne + H valence bond structure suggests the formation of a dative bond. This study highlights the distinct bonding mechanisms within the NgH series, showcasing the interplay between quantum interference and quasi-classical effects in molecules featuring noble gases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4cp04028g | DOI Listing |
Nat Commun
January 2025
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, 650093, Kunming, PR China.
Regulating carbon hybridization states lies at the heart of engineering carbon materials with tailored properties but orchestrating the sequential transition across three states has remained elusive. Here, we visiualize stepwise evolution in carbon hybridizations from sp³ to sp² and to sp states via dehydrogenation and elimination reactions of methylcyano-functionalized molecules on surfaces. Utilizing scanning probing microscopy, we distinguish three distinct carbon-carbon bond types within polymers induced by annealing at elevated temperatures.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
National Engineering Institute for the Research and Development of Endangered Medicinal Resources in Southwest China, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China; Guangxi Key Laboratory of High-Quality Formation and Utilization of Dao-Di Herbs, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530023, China. Electronic address:
Zein-based nanoparticles (NPs) have attracted considerable attention as potential delivery systems for bioactive compounds. However, their application has been limited by poor stability and redispersibility. In this study, we addressed these challenges by fabricating zein nanocarriers using branching structural fructo-oligosaccharides (P-FOS) and sodium caseinate (NaCas) as costabilizers.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Dravyaguna, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial regulators of cell cycle progression and represent important therapeutic targets in breast cancer. This study employs a comprehensive computational approach to identify novel CDK4/6 inhibitors from marine natural products. We utilized structure-based virtual screening of the CMNPD database and MNP library, followed by rigorous filtering based on drug-likeness criteria, PAINS filter, ADME properties, and toxicity profiles.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Dipartimento di Scienze Fisiche e Chimiche, Universita degli Studi dellAquila, Coppito, 67100 L'Aquila, Italy.
We present a comprehensive theoretical study, using state-of-the-art density functional theory simulations, of the structural and electrochemical properties of amorphous pristine and iron-doped nickel-(oxy)hydroxide catalyst films for water oxidation in alkaline solutions, referred to as NiCat and Fe:NiCat. Our simulations accurately capture the structural changes in locally ordered units, as reported by X-ray absorption spectroscopy, when the catalyst films are activated by exposure to a positive potential. We emphasize the critical role of proton-coupled electron transfer in the reversible oxidation of Ni(II) to Ni(III/IV) during this activation.
View Article and Find Full Text PDFChemMedChem
January 2025
Shanghai University, Institute of Nanochemistry and Nanobiology, No.99 Shangda Rd. Rm201, Bldg. E, 200444, Shanghai, CHINA.
As a newly emerging technology, conformational engineering (CE) has been gradually displaying the power of producing protein-like nanoparticles (NPs) by tuning flexible protein fragments into their original native conformation on NPs. But apparently, not all types of NPs can serve as scaffolds for CE. To expedite the CE technology on a broader variety of NPs, the essential characteristic of NPs as scaffolds for CE needs to be identified.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!