A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling Neurological Drug Delivery: Polymeric Nanocarriers for Enhanced Blood-Brain Barrier Penetration. | LitMetric

AI Article Synopsis

  • Neurological illnesses are tough to treat due to the blood-brain barrier (BBB), but polymeric nanocarriers (PNCs) show promise in enhancing medication delivery to the brain.
  • PNCs use various methods, including passive and active targeting strategies through structures like micelles and dendrimers, to improve drug permeability across the BBB.
  • The review discusses the manufacturing and design of PNCs, their effectiveness in treating conditions like Alzheimer's and Parkinson's, and potential safety concerns, highlighting their revolutionary potential in central nervous system (CNS) drug delivery.

Article Abstract

Treating neurological illnesses is challenging because the blood-brain barrier hinders therapeutic medications from reaching the brain. Recent advances in polymeric nanocarriers (PNCs), which improve medication permeability across the blood-brain barrier, may influence therapy strategies for neurological diseases. PNCs have several ways to deliver medications to the nervous system. This review article provides a summary of the parts and manufacturing methods involved in making PNCs. Additionally, it highlights the elements that result in PNCs having enhanced blood-brain barrier penetration. A combination of passive and active targeting strategies is used by PNCs intended to overcome the blood-brain barrier. Among these are micellar structures, nanogels, nanoparticles, cubosomes, and dendrimers. These nanocarriers, which are functionalized with certain ligands that target BBB transporters, enable the direct delivery of drugs to the brain. Mainly, the BBB prevents medications from entering the brain. Understanding the BBB's physiological and anatomical characteristics is necessary to get over this obstacle. Preclinical and clinical research demonstrates the safety and effectiveness of these PNCs, and their potential use in the treatment of neurological illnesses, including brain tumors, Parkinson's disease, and Alzheimer's disease, is discussed. Concerns that PNCs may have about their biocompatibility and possible toxicity are also covered in this review article. This study examines the revolutionary potential of PNCs in CNS drug delivery, potential roadblocks, ongoing research, and future opportunities for PNC design progress. PNCs open the door to more focused and efficient treatment for neurological illnesses by comprehending the subtleties of BBB penetration.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0113894501339455241101065040DOI Listing

Publication Analysis

Top Keywords

blood-brain barrier
20
neurological illnesses
12
pncs
9
drug delivery
8
polymeric nanocarriers
8
enhanced blood-brain
8
barrier penetration
8
review article
8
treatment neurological
8
blood-brain
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!