Multiple H-bonds induced mechanically robust vat photopolymerization 3D printing poly(urethane-urea) elastomers.

Mater Horiz

School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi 832003, P. R. China.

Published: November 2024

AI Article Synopsis

  • - Vat photopolymerization (VP) elastomers have potential uses in various industries but struggle with issues like low mechanical strength and durability due to incomplete polymerization and weak layer bonding.
  • - The study introduces a new dual cross-linked network (DCN) strategy for poly(urethane-urea) elastomers (PUEs) which boosts mechanical properties by utilizing multiple hydrogen bonds for better stress energy dissipation and stability.
  • - As a demonstration, researchers successfully 3D-printed stents that are intricate, strong, and biocompatible, showing that this advancement can lead to more robust and complex elastomer designs for engineering and biomedical applications.

Article Abstract

Vat photopolymerization (VP) elastomers show great promise across various fields, yet they face significant challenges in achieving adequate mechanical strength, elasticity, and durability due to incomplete polymerization and weak interfacial bonding between printed layers. In this study, we introduce high-performance poly(urethane-urea) elastomers (PUEs) utilizing a dual cross-linked network (DCN) strategy compatible with VP 3D printing. This innovative approach enhances mechanical properties by incorporating multiple hydrogen-bonded urethane and urea groups. The presence of multiple hydrogen bonds facilitates energy dissipation under external mechanical stress and improves interfacial interlocking, while the covalent cross-linked network provides stability and flexibility during deformation. The resulting elastomer exhibits a tensile strength of 28.30 ± 1.10 MPa, a recovery strain of approximately 300%, and a fracture energy of 22.90 ± 4.20 kJ m. As a proof of concept, we demonstrate the rapid fabrication of 3D-printed stents with intricate architectures, outstanding load-bearing capabilities, and excellent biocompatibility. This strategy not only paves the way for the development of mechanically robust, complex-structured PUEs but also broadens their application scope in engineering and biomedical fields.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4mh01191kDOI Listing

Publication Analysis

Top Keywords

mechanically robust
8
vat photopolymerization
8
polyurethane-urea elastomers
8
cross-linked network
8
multiple h-bonds
4
h-bonds induced
4
induced mechanically
4
robust vat
4
photopolymerization printing
4
printing polyurethane-urea
4

Similar Publications

Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.

View Article and Find Full Text PDF

Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs.

View Article and Find Full Text PDF

Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Fiber Optic Micro-Hole Salinity Sensor Based on Femtosecond Laser Processing.

Nanomaterials (Basel)

January 2025

School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China.

This study presents a novel reflective fiber Fabry-Perot (F-P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!