Vat photopolymerization (VP) elastomers show great promise across various fields, yet they face significant challenges in achieving adequate mechanical strength, elasticity, and durability due to incomplete polymerization and weak interfacial bonding between printed layers. In this study, we introduce high-performance poly(urethane-urea) elastomers (PUEs) utilizing a dual cross-linked network (DCN) strategy compatible with VP 3D printing. This innovative approach enhances mechanical properties by incorporating multiple hydrogen-bonded urethane and urea groups. The presence of multiple hydrogen bonds facilitates energy dissipation under external mechanical stress and improves interfacial interlocking, while the covalent cross-linked network provides stability and flexibility during deformation. The resulting elastomer exhibits a tensile strength of 28.30 ± 1.10 MPa, a recovery strain of approximately 300%, and a fracture energy of 22.90 ± 4.20 kJ m. As a proof of concept, we demonstrate the rapid fabrication of 3D-printed stents with intricate architectures, outstanding load-bearing capabilities, and excellent biocompatibility. This strategy not only paves the way for the development of mechanically robust, complex-structured PUEs but also broadens their application scope in engineering and biomedical fields.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4mh01191k | DOI Listing |
Adv Sci (Weinh)
January 2025
Institute of Microtechnology (IMT), Technische Universität Braunschweig, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
Incorporating mechanical stretching of cells in tissue culture is crucial for mimicking (patho)-physiological conditions and understanding the mechanobiological responses of cells, which can have significant implications in areas like tissue engineering and regenerative medicine. Despite the growing interest, most available cell-stretching devices are not compatible with automated live-cell imaging, indispensable for characterizing alterations in the dynamics of various important cellular processes. In this work, StretchView is presented, a multi-axial cell-stretching platform compatible with automated, time-resolved live-cell imaging.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA.
Protonic ceramic electrochemical cells (PCECs) can operate at intermediate temperatures (450° to 600°C) for power generation and hydrogen production. However, the operating temperature is still too high to revolutionize ceramic electrochemical cell technology. Lowering the operating temperature to <450°C will enable a wider material choice and reduce system costs.
View Article and Find Full Text PDFSci Adv
January 2025
Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA.
Chimeric antigen receptor T cells (CART) targeting CD19 through CD28.ζ signaling induce rapid lysis of leukemic blasts, contrasting with persistent tumor control exhibited by 4-1BB.ζ-CART.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Artificial Intelligence, Optics and Electronics (iOPEN), Northwestern Polytechnical University, Xi'an 710072, China.
This study presents a novel reflective fiber Fabry-Perot (F-P) salinity sensor. The sensor employs a femtosecond laser to fabricate an open liquid cavity, facilitating the unobstructed ingress and egress of the liquid, thereby enabling the direct involvement of the liquid in light transmission. Variations in the refractive index of the liquid induce corresponding changes in the effective refractive index of the optical path, which subsequently influences the output spectrum.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!