A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of EMG patterns in children during assisted walking in the exoskeleton. | LitMetric

Evaluation of EMG patterns in children during assisted walking in the exoskeleton.

Front Neurosci

Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, Rome, Italy.

Published: October 2024

AI Article Synopsis

  • - Exoskeletons are increasingly used for helping children with neurological disorders improve their gait, but evaluating their effectiveness remains complex due to impacts on sensorimotor interactions and potential gait abnormalities.
  • - This study explored how a specific exoskeleton affected muscle activity and spinal motor output in children during gait rehabilitation, focusing on the neuromechanics involved.
  • - Results indicated that even at slower walking speeds, muscle activation levels during exoskeleton use were similar to normal walking, suggesting that children's locomotor systems actively engaged during exoskeleton-assisted stepping.

Article Abstract

While exoskeleton technology is becoming more and more common for gait rehabilitation in children with neurological disorders, evaluation of gait performance still faces challenges and concerns. The reasoning behind evaluating the spinal locomotor output is that, while exoskeleton's guidance forces create the desired walking kinematics, they also affect sensorimotor interactions, which may lead to an abnormal spatiotemporal integration of activity in particular spinal segments and the risk of abnormalities in gait recovery. Therefore, traditional indicators based on kinematic or kinetic characteristics for optimizing exoskeleton controllers for gait rehabilitation may be supplemented by performance measures associated with the neural control mechanisms. The purpose of this study on a sample of children was to determine the basic features of lower limb muscle activity and to implement a method for assessing the neuromechanics of spinal locomotor output during exoskeleton-assisted gait. To this end, we assessed the effects of a robotic exoskeleton (ExoAtlet Bambini) on gait performance, by recording electromyographic activity of leg muscles and analyzing the corresponding spinal motor pool output. A slower walking setting (about 0.2 m/s) was chosen on the exoskeleton. The results showed that, even with slower walking, the level of muscle activation was roughly comparable during exoskeleton-assisted gait and normal walking. This suggests that, despite full assistance for leg movements, the child's locomotor controllers can interpret step-related afferent information promoting essential activity in leg muscles. This is most likely explained by the active nature of stepping in the exoskeleton (the child was not fully relaxed, experienced full foot loading and needed to maintain the upper trunk posture). In terms of the general muscle activity patterns, we identified notable variations for the proximal leg muscles, coactivation of the lumbar and sacral motor pools, and weak propulsion from the distal extensors at push-off. These changes led to the lack of characteristic lumbosacral oscillations of the center of motoneuron activity, normally associated with the pendulum mechanism of bipedal walking. This work shows promise as a useful technique for analyzing exoskeleton performance to help children develop their natural gait pattern and to guide system optimization in the future for inclusion into clinical care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541598PMC
http://dx.doi.org/10.3389/fnins.2024.1461323DOI Listing

Publication Analysis

Top Keywords

leg muscles
12
gait
8
gait rehabilitation
8
gait performance
8
spinal locomotor
8
locomotor output
8
muscle activity
8
exoskeleton-assisted gait
8
activity leg
8
slower walking
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!