Introduction: Neuropathic pain (NP) affects countless people worldwide; however, few effective treatments are currently available. Histone deacetylases (HDACs) participate in epigenetic modifications in neuropathy-induced nociceptive sensitization. Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter that can inhibit NP. The present study aimed to examine the role of spinal HDAC and its isoforms in neuropathy.
Methods: Male Wistar Rat with chronic constriction injury (CCI)-induced peripheral neuropathy and HDAC inhibitor, panobinostat, was administrated intrathecally. We performed quantitative real-time polymerase chain reaction (RT-qPCR), western blot, and immunohistochemical analysis of lumbar spinal cord dorsal horn and nociceptive behaviors (thermal hyperalgesia and mechanical allodynia) measurements.
Results: Herein, RT-qPCR analysis revealed that spinal , , and were upregulated in CCI rats. Western blotting and immunofluorescence staining further confirmed that HDAC3, HDAC4, and HDAC6 were significantly upregulated, whereas GABA and its synthesis key enzyme glutamic acid decarboxylase (GAD) 65 were dramatically downregulated. Intrathecal panobinostat attenuated nociceptive behavior and restored the downregulated spinal GAD65 and GABA expression in CCI rats.
Conclusions: HDAC upregulation might induce nociception through GAD65 and GABA inhibition in CCI-induced neuropathy. These findings strongly suggest that HDACs negatively regulate inhibitory neurotransmitters, constituting a potential therapeutic strategy for an epigenetic approach to manage NP.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543203 | PMC |
http://dx.doi.org/10.1097/PR9.0000000000001209 | DOI Listing |
Zhong Nan Da Xue Xue Bao Yi Xue Ban
July 2024
Department of Nephrology, Third Xiangya Hospital, Central South University, Changsha 410013.
Objectives: Genetic factors play an important role in the pathogenesis of diabetic kidney disease (DKD). Studies have shown that gene polymorphism is associated with the pathogenesis of type 2 diabetes mellitus (T2DM), but its role in DKD remains unclear. This study aims to analyze the distribution of alleles and genotypes of gene in patients with T2DM, and investigate the association between genetic polymorphism and DKD susceptibility in T2DM patients, which may provide new ideas for the pathogenesis of DKD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
All India Institute of Medical Sciences, AIIMS, New Delhi, Delhi, India.
Background: Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. Dysfunction of mitochondria and oxidative stress are known to aggravate the disease pathology. Sirtuins, NAD-dependent deacetylases, have a well-defined role in this pathway and thus can serve as a potential biomarker for the early detection of the disease.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
Background: Various studies have evidenced the neuroprotective role of SIRT1 activator. However, whether SIRT1 activator, Piceatannol pharmacological treatment is protective in chronic unpredictable stress induced memory dysfunction remains unknown. Therefore, this study design included testing the hypothesis that Piceatannol administered in chronic unpredictable stress induced memory dysfunction mice shows protective effects, explores & probes underlying the activation of SIRT1 pathway.
View Article and Find Full Text PDFBackground: Memory is influenced by epigenetic mechanisms that regulate gene expression. Histone acetyltransferases (HATs), and histone deacetylases (HDACs), are two competitive enzymes regulating histone acetylation. Histone acetylation is reduced in Alzheimer's disease (AD) brains, and evidence has shown a synergistic regulation of HDACs and HATs activities.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is the most common cause of age-related dementia, and the presence of amyloid-β (Aβ) plaques and tau-containing neurofibrillary tangles is associated with the neurodegeneration and cognitive impairment in this incurable disease. Growing evidence shows that epigenetic dysregulation through histone deacetylases (HDACs) plays a critical role in synaptic dysfunction and memory loss in AD, and HDACs have been highlighted as a novel class of anti-Alzheimer targets. Moreover, restoring Wnt/β-catenin signaling, which is greatly suppressed in AD brains, is a promising therapeutic strategy for AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!