Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
polysaccharides (PSP) are a traditional herbal medicine component with potential therapeutic effects on several diseases. The present study aimed to assess the role of PSP in the treatment of human prostate cancer using a PC-3 cell line by Cell CK-8, transwell and wound healing assays, then elucidate the potential underlying mechanisms by western blot and quantitative Real-time RT-PCR. Different concentrations of PSP were applied to PC-3 cells, and the proliferation, invasion and migration of PC-3 cells were demonstrated to be significantly inhibited with increasing concentrations of PSP. Additionally, cell apoptosis rate and expression of caspase-3 increased with higher PSP concentrations, and the cell cycle was arrested in the S phase. Furthermore, it was demonstrated that the expression of the multidrug resistance-1 gene and its encoded protein P-glycoprotein in PC-3 cells decreased following PSP treatment, suggesting that PSP may have the potential to reverse multidrug resistance in PC-3 cells. The present study also evaluated the possible mechanism of PSP action on PC-3 cells. The results revealed that phosphorylated P65, PI3K and AKT decreased in a concentration-dependent manner. As key molecules in the NF-κB and PI3K/Akt signaling pathways, this finding suggests that the potential mechanism of the effect of PSP on prostate cancer cells may involve simultaneous mediation of the PI3K/Akt and NF-κB signaling pathways. The present study demonstrated that PSP inhibit the proliferation, invasion and migration of PC-3 cells , as well as reverse MDR in these cells. The underlying mechanism may involve the simultaneous regulation of the PI3K/Akt and NF-κB signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542168 | PMC |
http://dx.doi.org/10.3892/ol.2024.14774 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!