Intrinsically stretchable conductive materials based on elastic substrates and conductive components play important roles in biomedical applications, such as exercise rehabilitation monitoring and disease prediction. A persistent challenge is to combine high fatigue resistance with excellent mechanical properties in stretchable conductive materials. Herein, we present a stretchable conductive material with both good fatigue resistance and high tensile properties (∼3170%) based on poly(acrylic acid)-phytic acid-trehalose-polypyrrole (denoted as PPTP). The as-prepared PPTP hydrogel electrode showed no obvious cracking or delamination after 400 loading and unloading cycles and maintained good electrical signal transmission function after 1000 cycles. We further collected stable signals for human motion and handwriting using the stretchable hydrogel electrode as a strain sensor, demonstrating the potential application of the PPTP stretchable hydrogel electrode in biomedicine.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.4c13654 | DOI Listing |
Adv Mater
January 2025
Department of Nano Engineering, Department of Nano Science and Technology, Sungkyunkwan University Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University (SKKU), Seobu-ro 2066, Jangan-gu, Suwon, 16419, Republic of Korea.
Carbon nanotubes (CNTs) produced by the floating-catalyst chemical vapor deposition (FCCVD) method are among the most promising nanomaterials of today, attracting interest from both academic and industrial sectors. These CNTs exhibit exceptional electrical conductivity, optical properties, and mechanical resilience due to their binder-free and low-defect structure, while the FCCVD method enables their continuous and scalable synthesis. Among the methodological FCCVD variations, aerosol CVD' is distinguished by its production of freestanding thin films comprising macroscale CNT networks, which exhibit superior performance and practical applicability.
View Article and Find Full Text PDFLangmuir
January 2025
Henan Province Engineering Technology Research Center of MEMS Manufacturing and Applications, School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou 450001, China.
The rapid development of wearable technology, flexible electronics, and human-machine interaction has brought about revolutionary changes to the fields of motion analysis and physiological monitoring. Sensors for detecting human motion and physiological signals have become a hot topic of current research. Inspired by the muscle fiber structure, this paper proposed a highly stable strain sensor that was composed of stretchable Spandex fibers (SPF), multiwalled carbon nanotubes (MWCNTs), and silicone rubber (Ecoflex).
View Article and Find Full Text PDFMater Horiz
January 2025
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang province, 315201, China.
Stretchable electromagnetic interference (EMI) shields with strain-insensitive EMI shielding and Joule heating performances are highly desirable to be integrated with wearable electronics. To explore the possibility of applying geometric design in elastomeric liquid metal (LM) composites and fully investigate the influence of LM geometry on stretchable EMI shielding and Joule heating, multifunctional wrinkle-structured LM/Ecoflex sandwich films with excellent stretchability are developed. The denser LM wrinkle enables not only better electrical conduction, higher shielding effectiveness (SE) and steady-state temperature, but also enhanced strain-stable far-field/near-field shielding performance and Joule-heating capability.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer.
View Article and Find Full Text PDFNat Commun
January 2025
School of Integrated Circuit, Tsinghua University, Beijing, P.R. China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!