AI Article Synopsis

  • Antibody-drug conjugates (ADCs) are a new type of treatment that merge the effectiveness of toxic drugs with the precision of antibodies, but their complex structure makes analysis challenging.
  • The use of middle-down mass spectrometry (MD MS) faces issues with spectral congestion, which can hide important fragment ions that reveal drug attachment sites.
  • Proton transfer charge reduction (PTCR) is introduced to simplify these spectra, allowing for a more effective investigation of ADCs and improving the identification of drug localization compared to traditional methods.

Article Abstract

Antibody-drug conjugates (ADCs) represent a novel class of immunoconjugates with growing therapeutic relevance, since they combine the efficacy of cytotoxic drugs with the specificity of antibodies. However, by design, ADCs introduce structural features into the monoclonal antibody scaffold that complicate their analysis. Payload attachment to cysteine or lysine residues can often result in product heterogeneity, regarding both the number of attached drug molecules and their conjugation site, necessitating the use of state-of-the-art MS instrumentation to elucidate their complexity. In middle-down mass spectrometry (MD MS), the gas-phase sequencing of ∼25 kDa ADC subunits with different ion activation techniques generally produces rich fragmentation mass spectra; however, spectral congestion can cause some fragment ions to go undetected, including those that can pinpoint the exact location of payload conjugation sites. Proton transfer charge reduction (PTCR) can substantially simplify fragment ion spectra, thereby unveiling the presence of product ions whose signals were previously suppressed. Herein, we present an MD MS strategy relying on the use of PTCR to investigate a cysteine-based ADC mimic with a variable drug-to-antibody ratio, targeting the unambiguous localization of payload conjugation sites. Unlike traditional tandem MS experiments (MS), which could not provide a complete map of conjugation sites, a single PTCR-based experiment (MS) proved to be sufficient to achieve this goal across all variably modified ADC subunits, including isomeric ones. Combining the results obtained from orthogonal ion activation techniques followed by PTCR further strengthened the confidence in the assignments.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.4c03872DOI Listing

Publication Analysis

Top Keywords

conjugation sites
12
antibody-drug conjugates
8
middle-down mass
8
mass spectrometry
8
proton transfer
8
transfer charge
8
charge reduction
8
adc subunits
8
ion activation
8
activation techniques
8

Similar Publications

Thiol-Ene Click Chemistry: A General Strategy for Tuning the Properties of Vinylene-Linked Covalent Organic Frameworks.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.

Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, ultrahigh chemical stability, and extraordinary optoelectronic properties. However, the types of reactions and the availability of monomers for synthesizing linked COFs are considerably limited by the irreversibility of the C═C bond, and the complete π-conjugated structure restricts their in-depth research in hydrophilicity, membrane materials, and proton conductivity. Postsynthetic modification (PSM), which can avoid these problems by incorporating functional moieties into the predetermined framework, provides an alternative way to construct diverse V-2D-COFs.

View Article and Find Full Text PDF

Background: UFMylation is an understudied ubiquitin-like post-translational modification (PTM). Like ubiquitin, UFM1 is conjugated to substrates via a catalytic cascade involving a UFM1-specific E1 (UBA5), E2 (UFC1), and an E3 ligase complex (UFL1, DDRGK1 and CDK5RAP3). UFMylation is reversible, and this is mediated by UFSP2.

View Article and Find Full Text PDF

Melanoma, with its steadily rising global incidence, is characterized by high invasiveness, leading to poor prognosis in advanced stages. There remains an unmet clinical need for the development of radiolabeled PET imaging probes for the early diagnosis of melanoma. Integrin VLA-4, a key factor in melanoma metastasis, presents a promising protein target to address the specificity shortcomings of existing probes in melanoma imaging.

View Article and Find Full Text PDF

Slide-Ring Structured Stress-Electric Coupling Hydrogel Microspheres for Low-Loss Transduction Between Tissues.

Adv Mater

January 2025

Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China.

High transductive loss at tissue injury sites impedes repair. The high dissipation characteristics in the electromechanical conversion of piezoelectric biomaterials pose a challenge. Therefore, supramolecular engineering and microfluidic technology is utilized to introduce slide-ring polyrotaxane and conductive polypyrrole to construct stress-electric coupling hydrogel microspheres.

View Article and Find Full Text PDF

Design and Regulation of Anthraquinone's Electrochemical Properties in Aqueous Zinc-Ion Batteries via Benzothiadiazole and Its Dinitro Derivatives.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, and Department of Macromolecular Science and Engineering, School of Chemistry and Chemical Engineering, Heilongjiang University, Harbin 150080, P. R. China.

Organic cathode materials are widely considered as highly promising for aqueous zinc-ion batteries (AZIBs) due to their tunable properties, low cost, and ease of processing and synthesis. Benzothiadiazoles have demonstrated significant potential as organic electrode materials in AZIBs, owing to their strong electron-accepting capabilities and the presence of multiple reversible redox sites in anthraquinone. In this study, we designed a polymer, poly(2-methyl-6-(7-methyl-5,6-dinitrobenzo[][1,2,5]thiadiazol-4-yl)anthracene-9,10-dione) (PBDQ), with multielectron transfer capability through a copolymerization approach.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!