Neurodegeneration and neuroinflammation are key components in the pathogenesis of Japanese Encephalitis caused by Japanese Encephalitis Virus (JEV) infection. The N-methyl-D-aspartate (NMDA)-type glutamate receptor displays excitatory neurotoxic and pro-inflammatory properties in a cell context-dependent manner. Herein, potential roles of the NMDA receptor in excitatory neurotoxicity and neuroinflammation and effects of NMDA receptor blockade against JEV pathogenesis were investigated in rat microglia, neuron/glia, neuron cultures, and C57BL/6 mice. In microglia, JEV infection induced glutamate release and activated post-receptor NMDA signaling, leading to activation of Ca mobilization and Calcium/Calmodulin-dependent Protein Kinase II (CaMKII), accompanied by pro-inflammatory NF-κB and AP-1 activation and cytokine expression. Additionally, increased Dynamin-Related Protein-1 protein phosphorylation, NAPDH Oxidase-2/4 expression, free radical generation, and Endoplasmic Reticulum stress paralleled with the reactive changes of microglia after JEV infection. JEV infection-induced biochemical and molecular changes contributed to microglia reactivity and pro-inflammatory cytokine expression. NMDA receptor antagonists MK801 and memantine alleviated intracellular signaling and pro-inflammatory cytokine expression in JEV-infected microglia. JEV infection induced neuronal cell death in neuron/glia culture associated with the concurrent production of pro-inflammatory cytokines. Conditioned media of JEV-infected microglia compromised neuron viability in neuron culture. JEV infection-associated neuronal cell death was alleviated by MK801 and memantine. Activation of NMDA receptor-related inflammatory changes, microglia activation, and neurodegeneration as well as reversal effects of memantine were revealed in the brains of JEV-infected mice. The current findings highlight a crucial role of the glutamate/NMDA receptor axis in linking excitotoxicity and neuroinflammation during the course of JEV pathogenesis, and proposes the anti-inflammatory and neuroprotective potential of NMDA receptor blockade.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11545997 | PMC |
http://dx.doi.org/10.1186/s12974-024-03288-0 | DOI Listing |
Naunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFBioorg Med Chem
January 2025
Bikai Union Laboratory, Shenyang Pharmaceutical University, Shenyang 110016, China; Hainan Bikai Pharmaceutical Co., LTD, Hainan 570216, China. Electronic address:
The NMDA receptor has long attracted researchers' attention due to its potential as a drug target and its central role in the central nervous system. The NMDA receptor is a ligand-gated and voltage-dependent ion channel widely distributed in the central nervous system. In this study, we employed a drug design strategy combining "molecular assembly" and "combinatorial chemistry.
View Article and Find Full Text PDFSheng Li Xue Bao
December 2024
State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
At present, the problem of drug addiction treatment mainly lies in the high relapse rate of drug addicts. Addictive drugs will bring users a strong sense of euphoria and promote drug seeking. Once the drug is withdrawn, there will be withdrawal symptoms such as strong negative emotions and uncomfortable physical reactions.
View Article and Find Full Text PDFEur J Neurosci
January 2025
Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
To summarise the clinical characteristics, radiological features, treatments and prognosis of patients with myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) overlapped with NMDA receptor (NMDAR) encephalitis. We retrospectively analysed patients who exhibited dual positivity for MOG antibodies and NMDAR antibodies in serum/CSF from Jan 2018 to Jun 2023. Ten patients with MOGAD and NMDAR encephalitis were enrolled.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!