Influence of the mass percentage of binders on the properties of LHC.

Sci Rep

Agriculture and Hydraulic Engineering University, Suihua University, Suihua, Heilongjiang Province, 152061, China.

Published: November 2024

AI Article Synopsis

  • This study explores how varying the ratio of binder materials (lime, cement, and coal gangue powder) to hemp shives affects the physical and mechanical properties of lime-hemp concrete (LHC).
  • Five different binder to hemp shives mass ratios (1.2 to 2.0) were tested, revealing that a higher binder content improved drying speed, strength, and thermal conductivity, while decreasing water absorption.
  • Advanced microstructural analyses showed that increased binder led to more hydration products, enhancing the material’s density and strength by filling internal voids and bonding effectively with hemp fibers.

Article Abstract

This paper investigates the effects on the physical and mechanical properties and microstructure of lime-hemp concrete (LHC) materials at different binder mass ratios. A mixture of three cementitious materials, slaked lime, cement, and coal gangue powder, was used as binder, and hemp shives were used as concrete aggregate, and five test groups were designed, i.e., binder/hemp shives (B/H) mass ratios of 1.2, 1.4, 1.6, 1.8, and 2.0. The physical properties of LHC, including density, drying rate, water absorption, thermal conductivity coefficients, and mechanical properties (compressive strength and flexural strength) with different binder ratios were investigated. In addition, the microstructural properties of 56d LHC were investigated by SEM, XRD, and TG-DTG micro-scale analysis methods. The results showed that with the increase in binder content, the drying speed of LHC became faster, the thermal conductivity coefficients, compressive strength, and flexural strength increased, and the water absorption was just the opposite. With a fit ratio of 2.0, the strength is the greatest and the toughness is the best; with a fit ratio of 1.2, the thermal conductivity coefficient is the smallest and the insulation effect is the best. In addition, the hydration of the binder produced different forms of hydration products (CaCO and C-S-H), and the hydration products increased in quantity with the increase of the binder, resulting in stronger CaCO and C-S-H diffraction peaks. The hydration products produce a better bond with the rough cannabis particle surface, filling the internal voids of the LHC, improving the density of the material, and enhancing the mechanical properties of the material.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544039PMC
http://dx.doi.org/10.1038/s41598-024-78638-2DOI Listing

Publication Analysis

Top Keywords

mechanical properties
12
thermal conductivity
12
hydration products
12
properties lhc
8
mass ratios
8
water absorption
8
conductivity coefficients
8
compressive strength
8
strength flexural
8
flexural strength
8

Similar Publications

Low fracture toughness, low-temperature degradation (LTD) susceptibility, and inadequate soft tissue integration greatly limit the application of zirconia ceramic abutment. Integrating the "surface" of hard all-ceramic materials into the gingival soft tissue and simultaneously promoting the "inner" LTD resistance and fracture toughness is challenging. Composite ceramics are effective in improving the comprehensive properties of materials.

View Article and Find Full Text PDF

Impact of chlorine dioxide and chlorhexidine mouthwashes on friction and surface roughness of orthodontic stainless steel wires: an in-vitro comparative study.

F1000Res

January 2025

Department of Orthodontics and Dentofacial Orthopaedics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karanataka, 576104, India.

Objectives: Good oral hygiene measures are important for successful orthodontic treatment. They involve various types of mouthwashes which have been reported to cause alteration of mechanical properties of archwires. This study aimed to evaluate the effects of a new kind of chlorine-dioxide-containing mouthwash on the mechanical properties and surface morphology of stainless steel orthodontic archwires against the already prevalent chlorhexidine mouthwash in the market.

View Article and Find Full Text PDF

Background: Post-surgical tendon adhesion formation is a frequent clinical complication with limited treatment options. The aim of this study is to investigate safety and efficacy of orally administration of crocin in attenuating post-operative tendon-sheath adhesion bands in an Achilles tendon rat model.

Methods: Structural, mechanical, histological, and biochemical properties of Achilles tendons were analyzed in the presence and absence of crocin.

View Article and Find Full Text PDF

This study investigates the enhancement of gelatin (GEL) films using hydroxypropyl methylcellulose (HPMC) and carboxymethyl cellulose (CMC) for edible film packaging applications. Although GEL is biocompatible and cost-effective, its limited mechanical strength presents significant challenges for practical applications. The findings indicate that CMC effectively increases tensile strength (TS), while HPMC improves elongation at break (EAB) and hydrophilicity.

View Article and Find Full Text PDF

A Silicon-containing Oligomeric Charring Agent (CNCSi-DA) containing triazine rings and silicon was designed, synthesized and characterized. CNCSi-DA was chosen as macromolecular coating agent to modify Ammonium Polyphosphate (APP) to be core-shell coating-mixture (APP@CNCSi-DA). The synergistic effects of APP@CNCSi-DA on hydrophobicity, mechanical and flame retardant properties, and mechanism of flame-retardant polypropylene (PP) were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!