A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unravelling intermediate migration patterns in gull hybrids: insights from ring re-encounters. | LitMetric

AI Article Synopsis

  • Hybridization in birds occurs when closely related species interbreed, leading to hybrids that have different genetic, physical, and behavioral traits compared to their parent species.
  • The study focused on the migration patterns of hybrids between the Herring Gull and Caspian Gull to see if their movements were intermediate, which could influence our understanding of species evolution and migration genetics.
  • Results showed that these large gull hybrids exhibited intermediate migration patterns, suggesting that there are no strong selection pressures against them, highlighting the importance of further research into how hybrid migration affects ecology.

Article Abstract

Hybridization is a common phenomenon in birds, particularly between closely related species, when reproductive isolation mechanisms are insufficiently developed. Hybrids differ from the parental species in genetic, morphological, and behavioural traits. However, the migration patterns of hybrids have been scarcely studied. Examining hybrid migration behaviour is essential as it may reveal their role as a "gene bridge" between species and enhance our understanding of speciation mechanisms and the genetics of migration. Most research focuses on tracking the migration of long-distance migrants, but the effect of hybridization on migration is poorly understood also in short-distance migrants. The study aimed to verify whether the migratory movements of interspecific hybrids between the Herring (Larus argentatus) and the Caspian Gull (L. cachinnans) are intermediate, as predicted by the genetic basis of migration. Migration patterns, based on distance and direction, were determined from re-encounter data of individuals ringed in Poland, for over 20 years (2002-2023). These included both allopatric (parental species) and sympatric (both parental species and hybrids) populations. The results indicated that large gull hybrids exhibit an intermediate migration patterns, similarly to other hybridizing species. Unlike many cases where intermediacy may select against hybrids, the absence of significant environmental barriers along gulls' migration routes and their wide wintering range likely mitigates selective pressures. This finding underscores the need for further investigation into the ecological implications of hybrid migration patterns. By using bird re-encounter data, we demonstrated that it provides a sufficient basis for analysing migration patterns and detecting intermediacy, even in within-continental and short-distance migrants.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543659PMC
http://dx.doi.org/10.1038/s41598-024-77476-6DOI Listing

Publication Analysis

Top Keywords

migration patterns
24
migration
12
parental species
12
intermediate migration
8
gull hybrids
8
hybrid migration
8
short-distance migrants
8
re-encounter data
8
hybrids
7
patterns
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!