Mapping membrane biophysical nano-environments.

Nat Commun

Department of Immunology and Immunotherapy, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Birmingham, UK.

Published: November 2024

AI Article Synopsis

  • The mammalian plasma membrane contains lipid domains with different properties, which are difficult to study because they look similar to the surrounding membrane and are too small for traditional optical microscopy.
  • Researchers combined a fluorescent probe with advanced microscopy techniques to obtain precise location data and insights about the membrane's environment, creating a detailed point pattern.
  • They developed algorithms to analyze these patterns and successfully visualized nano-domains in both artificial membranes and living cells, providing a new tool for studying membrane properties and their changes under external influences.

Article Abstract

The mammalian plasma membrane is known to contain domains with varying lipid composition and biophysical properties. However, studying these membrane lipid domains presents challenges due to their predicted morphological similarity to the bulk membrane and their scale being below the classical resolution limit of optical microscopy. To address this, we combine the solvatochromic probe di-4-ANEPPDHQ, which reports on its biophysical environment through changes in its fluorescence emission, with spectrally resolved single-molecule localisation microscopy. The resulting data comprises nanometre-precision localisation coordinates and a generalised polarisation value related to the probe's environment - a marked point pattern. We introduce quantification algorithms based on topological data analysis (PLASMA) to detect and map nano-domains in this marked data, demonstrating their effectiveness in both artificial membranes and live cells. By leveraging environmentally sensitive fluorophores, multi-modal single molecule localisation microscopy, and advanced analysis methods, we achieve nanometre scale mapping of membrane properties and assess changes in response to external perturbation with methyl-β-cyclodextrin. This integrated methodology represents an integrated toolset for investigating marked point pattern data at nanometre spatial scales.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544141PMC
http://dx.doi.org/10.1038/s41467-024-53883-1DOI Listing

Publication Analysis

Top Keywords

mapping membrane
8
localisation microscopy
8
marked point
8
point pattern
8
membrane biophysical
4
biophysical nano-environments
4
nano-environments mammalian
4
mammalian plasma
4
membrane
4
plasma membrane
4

Similar Publications

Pupylation-based proximity labeling reveals regulatory factors in cellulose biosynthesis in Arabidopsis.

Nat Commun

January 2025

Copenhagen Plant Science Center, Department of Plant & Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark.

Knowledge about how and where proteins interact provides a pillar for cell biology. Protein proximity-labeling has emerged as an important tool to detect protein interactions. Biotin-related proximity labeling approaches are by far the most commonly used but may have labeling-related drawbacks.

View Article and Find Full Text PDF

Groundwater is widely threatened by hazardous manganese and ammonia. In present study, a novel gravity-driven fixed-bed ceramic membrane filtration (GDFBCM) with critical PAC-MnOx-ceramsite filters was built to address these issues. Static ceramsite filters in GDCM significantly increased membrane flux from 11 L/m·h to 18 L/m·h on the 50th day of filtration.

View Article and Find Full Text PDF

Anticounterfeiting technologies have become increasingly crucial due to the growing issue of counterfeit goods, particularly in high-value industries. Traditional methods such as barcodes and holograms are prone to replication, prompting the need for advanced, cost-effective, and efficient solutions. In this work, a practical application of anodic aluminum oxide (AAO) membranes are presented for anticounterfeiting, which addresses the challenges of high production costs and complex fabrication processes.

View Article and Find Full Text PDF

Bovine coronavirus (BCoV), a significant cattle pathogen causing enteric and respiratory diseases, is primarily detected using reverse transcription-polymerase chain reaction. Our objective was to develop a novel detection method for BCoV by matrix-assisted laser desorption/ionization‒time-of-flight mass spectrometry (MALDI-TOF MS). Peptide mass fingerprint analysis revealed that nucleocapsid (N), membrane (M), and hemagglutinin-esterase (HE) were three main BCoV proteins.

View Article and Find Full Text PDF

Dermatologists have been interested in recent advancements in regenerative therapy. Current research is actively investigating the possibility of placental tissue derivatives to decelerate the skin aging process, enhance skin regeneration, reduce scarring, and prevent hair loss. Amniotic membranes (AM) play a crucial role in regenerative medicine as they serve as a suitable means of transporting stem cells, growth hormones, cytokines, and other essential compounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!