AI Article Synopsis

  • Soft materials that can respond to light are being explored for creating human-friendly actuators, but their motion has been limited to two dimensions due to how light interacts with these materials.* -
  • This study introduces a new type of liquid-crystalline polymer films that deform through a process called two-photon absorption, which uses focused laser pulses for stimulation.* -
  • The unique ability to control the bending and twisting of these films through precise laser targeting allows for a wide range of complex, three-dimensional movements, making them highly valuable for microactuator applications.*

Article Abstract

Soft materials that respond to external stimuli are promising candidates for next-generation actuators with human-friendly nature. Among various stimuli to induce strain, light offers spatial selectivity, which allows versatile motion of a continuous body. However, spatial selectivity of photoactuation has been limited in two dimension due to the predominant absorption of photons by chromophores near a light source in accordance with Beer-Lambert law. Here, we report the deformation of crosslinked liquid-crystalline polymer films triggered by two-photon absorption. The films containing azotolane moieties show photoinduced deformation upon irradiation with fs laser pulses through two-photon absorption. The direction of photoinduced bending is controlled by depth-selective excitation with a focused laser beam. Furthermore, the mode of deformation is transformed from bending to twisting by irradiating spots near an edge of the film. Inhomogeneous photoirradiation with high spatial selectivity allows an infinite variation of three-dimensional motions even apart from preprogrammed behavior, which would be advantageous especially in application to microactuators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544012PMC
http://dx.doi.org/10.1038/s41467-024-53682-8DOI Listing

Publication Analysis

Top Keywords

two-photon absorption
12
spatial selectivity
12
liquid-crystalline polymer
8
polymer films
8
selectivity allows
8
spatially selective
4
selective actuation
4
actuation liquid-crystalline
4
films two-photon
4
absorption
4

Similar Publications

Biomedical applications of the engineered AIEgen-lipid nanostructureand.

Prog Biomed Eng (Bristol)

December 2024

School of Biomedical Engineering, The Key Laboratory of Advanced Interdisciplinary Studies, The First Affiliated Hospital, Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou 510260, People's Republic of China.

Since the concept of aggregation-induced emission (AIE) was first coined by Tang and co-workers, AIE-active luminogens (AIEgens) have drawn widespread attention among chemists and biologists due to their unique advantages such as high fluorescence efficiency, large Stokes shift, good photostability, low background noise, and high biological visualization capabilities in the aggregated state, surpassing conventional fluorophores. A growing number of AIEgens have been engineered to possess multifunctional properties, including near-infrared emission, two-photon absorption, reactive oxygen species (ROS) generation and photothermal conversion, making them suitable for deep-tissue imaging and phototherapy. AIEgens show great potential in biomedical applicationsand.

View Article and Find Full Text PDF

Computing Excited States of Very Large Systems with Range-Separated Hybrid Functionals and the Exact Integral Simplified Time-Dependent Density Functional Theory (XsTD-DFT).

J Phys Chem Lett

December 2024

Theoretical Chemistry Group, Molecular Chemistry, Materials and Catalysis Division (MOST), Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place Louis Pasteur 1, B-1348 Louvain-la-Neuve, Belgium.

Simplified quantum chemistry (sQC) methods can routinely compute excited states for very large systems in an "all-atom" fashion. They are viable alternatives to regular multiscale schemes. sQC methods have the advantage of accounting explicitly for all of the environment at a quantum mechanical (QM) level.

View Article and Find Full Text PDF

In the present study, lanthanum oxytellurate (LOT) samples with varying La : Te ratios are successfully synthesized using a simple hydrothermal method that has enormous advantages. The prepared samples crystallize in a LaOTe composite phase with an orthorhombic crystal system. A nanorod-like morphology is observed for each sample, and the presence of constituent elements is verified from EDX results.

View Article and Find Full Text PDF

Cellular and Intravital Nucleus Imaging by a D-π-A Type of Red-Emitting Two-Photon Fluorescent Probe.

Anal Chem

December 2024

State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui Street S., Lanzhou, Gansu 730000, China.

The advancement in fluorescent probe technology for visualizing nuclear morphology and nucleic acid distribution in live cells and has attracted considerable interest within the biomedical research community, as it offers invaluable insights into cellular dynamics across various physiological and pathological contexts. In this study, we present a novel two-photon nucleus-imaging fluorescent probe called Nu-red, which is a typical donor(D)-π-acceptor(A) rotor composed of the donor (dihydroquinoline) and acceptor (pyridiniumylpentadienitrile) parts linked by a single bond. This probe offers several advantages, including long-wavelength excitation and emission (λ/λ = 610/664 nm), favorable quantum yields (1.

View Article and Find Full Text PDF

Excitonic Dark States in Molecular Monolayer Crystals.

Nano Lett

December 2024

School of Engineering, ANU College of Engineering, Computing and Cybernetics, The Australian National University, Canberra, ACT 2601, Australia.

The tightly bound excitons and strong dipole-dipole interactions in two-dimensional molecular crystals enable rich physics. Among them, superradiance (SR), the spontaneous coherent emission from bright excitons, has sparked considerable interest in quantum-information applications. In addition, optically forbidden states (dark exciton states) have potential to both achieve Bose-Einstein condensation and modulate exciton dynamics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!