AI Article Synopsis

  • Microbial oxidation of volatile alkanes in anoxic environments is crucial for Earth’s biogeochemical cycles.
  • The discovery of alkyl-CoM reductases (ACR) in archaea suggests they can both oxidize and potentially form alkanes, leading to the hypothesis of alkane generation in nature.
  • Research on Candidatus Syntrophoarchaeum shows that the anaerobic oxidation of butane is reversible, indicating that butane, and possible higher volatile alkanes, can be biologically formed, which helps explain their isotopic signatures found in sedimentary basins.

Article Abstract

Microbial formation and oxidation of volatile alkanes in anoxic environments significantly impacts biogeochemical cycles on Earth. The discovery of archaea oxidizing volatile alkanes via deeply branching methyl-coenzyme M reductase variants, dubbed alkyl-CoM reductases (ACR), prompted the hypothesis of archaea-catalysed alkane formation in nature (alkanogenesis). A combination of metabolic modelling, anaerobic physiology assays, and isotope labeling of Candidatus Syntrophoarchaeum archaea catalyzing the anaerobic oxidation of butane (AOB) show a back flux of CO to butane, demonstrating reversibility of the entire AOB pathway. Back fluxes correlate with thermodynamics and kinetics of the archaeal catabolic system. AOB reversibility supports a biological formation of butane, and generally of higher volatile alkanes, helping to explain the presence of isotopically light alkanes and deeply branching ACR genes in sedimentary basins isolated from gas reservoirs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11543930PMC
http://dx.doi.org/10.1038/s41467-024-53932-9DOI Listing

Publication Analysis

Top Keywords

volatile alkanes
12
anaerobic oxidation
8
oxidation butane
8
alkanes deeply
8
deeply branching
8
flux anaerobic
4
butane
4
butane support
4
support archaea-mediated
4
archaea-mediated alkanogenesis
4

Similar Publications

Pollution characteristics and potential sources of Peroxyacetyl Nitrate in a petrochemical industrialized City, Northwest China.

Chemosphere

January 2025

Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, Gansu Province, 730000, China; Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.

Peroxyacetyl Nitrate (CHC(O)ONO, PAN), a typical secondary product of photochemical reactions, is well known to be a better photochemical indicator due to the only secondary photochemical source in the troposphere. Studies on PAN pollution are sparse in northwest China, resulting in a limited understanding of photochemical pollution in recent years. Herein, the measurement of PAN, O, volatile organic compounds (VOCs), NO, other related species, and meteorological parameters were conducted from May 1 to August 31, 2022, at an urban site in Lanzhou.

View Article and Find Full Text PDF

The aroma of yak milk powder is a crucial sensory indicator for evaluating its quality and flavor. Yak milk powders collected from different lactation periods exhibit distinct flavors, but no studies have thoroughly investigated the aroma characteristics and variation patterns of yak milk powders across these periods. This study identified and analyzed the volatile compounds in freeze-dried colostrum powder (YCSP), freeze-dried mature milk powder (YMMP), and freeze-dried ending milk powder (YEMP) using headspace solid-phase microextraction combined with gas chromatography-mass spectrometry (HS-SPME-GC-MS) and multivariate statistical analysis.

View Article and Find Full Text PDF

Strong emissions and aerosol formation potential of higher alkanes from diesel vehicles.

J Hazard Mater

December 2024

College of Environment and Climate, Institute for Environmental and Climate Research, Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Jinan University, 51143, China.

Higher alkanes are a major class of intermediate volatile organic compounds (IVOCs) emitted by vehicles, which have been considered as important precursors of secondary organic aerosol (SOA) in urban area. Dynamometer experiments were conducted to characterize emissions from gasoline and diesel vehicles in China. Three types of higher alkanes, namely acyclic, cyclic, and bicyclic alkanes, were explicitly quantified through the novel proton transfer reaction time-of-flight mass spectrometer with NO ionization (NO PTR-ToF-MS) with time response of 1 second.

View Article and Find Full Text PDF

The Characteristics, Sources, and Health Risks of Volatile Organic Compounds in an Industrial Area of Nanjing.

Toxics

November 2024

Joint International Research Laboratory of Climate and Environment Change, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China.

This study investigates the chemical complexity and toxicity of volatile organic compounds (VOCs) emitted from national petrochemical industrial parks and their effects on air quality in an industrial area of Nanjing, China. Field measurements were conducted from 1 December 2022, to 17 April 2023, focusing on VOC concentrations and speciations, diurnal variations, ozone formation potential (OFP), source identification, and associated health risks. The results revealed an average total VOC (TVOC) concentration of 15.

View Article and Find Full Text PDF

This study employed electronic nose technology to assess the mold levels in soybeans, conducting analyses on artificially inoculated soybeans with five strains of fungi and distinguishing them from naturally moldy soybeans. Principal component analysis (PCA) and linear discriminant analysis (LDA) were used to evaluate inoculated and naturally moldy samples. The results revealed that the most influential sensor was W2W, which is sensitive to organic sulfur compounds, followed by W1W (primarily responsive to inorganic sulfur compounds), W5S (sensitive to small molecular nitrogen oxides), W1S (responsive to short-chain alkanes such as methane), and W2S (sensitive to alcohols, ethers, aldehydes, and ketones).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!