A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Catalyst-free and wavelength-tuned glycosylation based on excited-state intramolecular proton transfer. | LitMetric

The chemoselectivity of organic reactions is a fundamental topic in organic chemistry. In the long history of chemical synthesis, achieving chemoselectivity is mainly limited to thermodynamic conditions by an exogenous activation strategy. Here, we design an endogenous activation method, which can be used to control the chemoselectivity of phenol and naphthol through the photo-induced excited-state intramolecular proton transfer (ESIPT). A wavelength-tuned glycosylation is developed to showcase the penitential of this new strategy. Traditionally, an exogenous activator (electrophilic promoters) is essential to induce the cleave of a polar single bond, and this strategy has been extensively studied and used in the glycosylation chemistry, for the formation of oxocarbenium cation intermediate. In our systems, the oxocarbenium cation intermediates can be selectively formed from glycosyl donors bearing tunable chromophoric groups under mild conditions of acid-base free and redox neutrality, which enables continuous synthesis of oligosaccharides.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544245PMC
http://dx.doi.org/10.1038/s41467-024-54020-8DOI Listing

Publication Analysis

Top Keywords

wavelength-tuned glycosylation
8
excited-state intramolecular
8
intramolecular proton
8
proton transfer
8
oxocarbenium cation
8
catalyst-free wavelength-tuned
4
glycosylation based
4
based excited-state
4
transfer chemoselectivity
4
chemoselectivity organic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!