A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dual Gold Nanostructures-Based Stretchable Electrochemiluminescence Sensors for Hydrogen Peroxide Monitoring in Endothelial Mechanotransduction. | LitMetric

Dual Gold Nanostructures-Based Stretchable Electrochemiluminescence Sensors for Hydrogen Peroxide Monitoring in Endothelial Mechanotransduction.

ACS Sens

Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China.

Published: November 2024

AI Article Synopsis

  • Hydrogen peroxide (HO) release in blood flow is crucial for vascular health, and it is triggered by mechanical stress on endothelial cells.* -
  • The study introduces a novel stretchable electrochemiluminescence (ECL) sensor made from gold nanostructures that specifically detects HO levels, overcoming interference from cell secretions.* -
  • By using human umbilical vein endothelial cells, the sensor can monitor HO release in real time during stretching, showcasing its potential for biomedical applications and health monitoring.*

Article Abstract

Hydrogen peroxide (HO) release during blood flow is commonly provoked by the cyclic stretch and dynamic shear stress of endothelial cells and is of vital significance for maintaining vascular function. Flexible and stretchable electrochemical sensors show great capability in retrieving mechanical stimulation-induced HO variation; however, cell secretions, especially electroactive constituents' interferences, remain a big concern for sensing accuracy. Herein, we developed a stretchable electrochemiluminescence (ECL) sensor by synthesizing L012-reduced gold nanospheres and decorating them onto a polydimethylsiloxane film-supported gold nanotubes substrate (Au NTs/PDMS) to form dual gold nanostructure-modified meshwork interface. Given the specific reaction between L012 and HO, the as-prepared Au-L012/Au NTs/PDMS exhibited outstanding selectivity toward HO quantification. Through culturing human umbilical vein endothelial cells (HUVECs), real-time monitoring of transient HO release from mechanically sensitive HUVECs in stretching states was realized. This work successfully incorporated the ECL sensing model into in situ cellular sensing, therefore expanding the application mode of the ECL approach for health care and biomedical investigation.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.4c02421DOI Listing

Publication Analysis

Top Keywords

dual gold
8
stretchable electrochemiluminescence
8
hydrogen peroxide
8
endothelial cells
8
gold nanostructures-based
4
nanostructures-based stretchable
4
electrochemiluminescence sensors
4
sensors hydrogen
4
peroxide monitoring
4
monitoring endothelial
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!