Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jtho.2024.09.1427 | DOI Listing |
ChemSusChem
January 2025
University of Electronic Science and Technology of China, School of Material and Energy, Qingshuihe Campus:No.2006, Xiyuan Ave, West Hi-Tech Zone, 611731, Chengdu, CHINA.
Modulating the oxidation state of copper (Cu) is crucial for enhancing the electrocatalytic CO2 reduction reaction (CO2RR), particularly for facilitating deep reductions to produce methane (CH4) or multi-carbon (C2+) products. However, Cuδ+ sites are thermodynamically unstable, fluctuating their oxidation states under reaction conditions, which complicates their functionality. Incorporating interfacial metal oxides has emerged as an effective strategy for stabilizing these oxidation states.
View Article and Find Full Text PDFJMIR Form Res
January 2025
School of Nursing, Li Ka Shing Faculty of Medicine, University of Hong Kong, 5/F, Academic Building, Pokfulam, Hong Kong, China (Hong Kong), 852 39176690.
Background: Breastfeeding is vital for the health and well-being of both mothers and infants, and it is crucial to create supportive environments that promote and maintain breastfeeding practices.
Objective: The objective of this paper was to describe the development of a breastfeeding-friendly app called "bfGPS" (HKU TALIC), which provides comprehensive territory-wide information on breastfeeding facilities in Hong Kong, with the goal of fostering a breastfeeding-friendly community.
Methods: The development of bfGPS can be categorized into three phases, which are (1) planning, prototype development, and preimplementation evaluation; (2) implementation and updates; and (3) usability evaluation.
Am J Cancer Res
December 2024
Department of Hematology, Yantai Yuhuangding Hospital Yantai 264001, Shandong, China.
This review discusses multiple aspects of follicular lymphoma (FL), including etiology, treatment challenges, and future perspectives. First, we delve into the etiology of FL, which involves a variety of pathogenic mechanisms such as gene mutations, chromosomal abnormalities, immune escape, immune system dysregulation, familial inheritance, and environmental factors. These mechanisms provide the context for understanding the diversity and complexity of FL.
View Article and Find Full Text PDFMater Today Bio
February 2025
Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, College of Life Sciences, Northwest University, Xi'an, 710069, Shaanxi, China.
Organoids, exhibiting the capability to undergo differentiation in specific in vitro growth environments, have garnered significant attention in recent years due to their capacity to recapitulate human organs with resemblant in vivo structures and physiological functions. This groundbreaking technology offers a unique opportunity to study human diseases and address the limitations of traditional animal models. Cardiovascular diseases (CVDs), a leading cause of mortality worldwide, have spurred an increasing number of researchers to explore the great potential of human cardiovascular organoids for cardiovascular research.
View Article and Find Full Text PDFChem Sci
December 2024
School of Chemical Engineering, The University of Adelaide Adelaide SA 5005 Australia
High-entropy spinel (HES) compounds, as a typical class of high-entropy materials (HEMs), represent a novel frontier in the search for next-generation catalysts. Their unique blend of high entropy, compositional diversity, and structural complexity offers unprecedented opportunities to tailor catalyst properties for enhanced performance (, activity, selectivity, and stability) in heterogeneous reactions. However, there is a gap in a critical review of the catalytic applications of HESs, especially focusing on an in-depth discussion of the structure-property-performance relationships.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!