A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Characterization of a salt-tolerated exo-fructanase from Microbacterium sp. XL1 and its application for high fructose syrup preparation from inulin. | LitMetric

Characterization of a salt-tolerated exo-fructanase from Microbacterium sp. XL1 and its application for high fructose syrup preparation from inulin.

Int J Biol Macromol

Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, 59 Cangwu Road, Haizhou, Lianyungang 222005, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, 59 Cangwu Road, Lianyungang 222005, China; Jiangsu Institute of Marine Resources Development, 59 Cangwu Road, Haizhou, Lianyungang 222005, China.

Published: December 2024

AI Article Synopsis

  • Exo-fructanase enzymes break down fructans like levan and inulin, producing fructose, and this study focuses on a newly identified enzyme, Mle3A, from Microbacterium sp. XL1.
  • Mle3A has a unique structure with several functional domains and shows optimal activity at temperatures between 50-55 °C and a pH of 5.5, effectively hydrolyzing various sugars including inulin.
  • The enzyme's activity is significantly boosted by certain metal ions, particularly manganese, and it can efficiently convert inulin into high fructose syrup, making it a promising tool for producing valuable chemicals from inulin biomass.

Article Abstract

Exo-fructanase enzymes catalyze the hydrolysis of β-2,6 and β-2,1 linkages in levan and inulin fructans, respectively, yielding fructose. In this study, we identified a multidomain exo-fructanase, Mle3A, from Microbacterium sp. XL1. Mle3A is a 124.2 kDa protein comprising a GH32 N-terminal five-bladed β-propeller structure, a GH32 C-terminal β-sandwich module, and a fibronectin type 3 domain. The recombinant enzyme rMle3A exhibited peak activity at temperatures of 50-55 °C and a pH of 5.5, demonstrating hydrolytic capabilities towards levan, inulin, sucrose, and raffinose. The activity of rMle3A on inulin was enhanced in the presence of Mn, Ca, Ba, Sr, Co, and Mg ions. Notably, 5 mM Mn increased the inulin hydrolytic activity of rMle3A by over 187 %, and the enzyme's activity was unaffected by NaCl concentrations ranging from 0 to 3 M. Purified rMle3A was effectively utilized to produce high fructose syrup from inulin, achieving a maximum fructose concentration of 26.98 g/L and 71.9 % inulin hydrolysis under optimal conditions (85 rpm, 50 °C, pH 5.5) within 2.5 h. This study introduces a new salt-tolerant, multi-ion facilitated fructanase, rMle3A, for the conversion of inulin biomass into high fructose syrup and other high-value chemicals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2024.137288DOI Listing

Publication Analysis

Top Keywords

high fructose
12
fructose syrup
12
microbacterium xl1
8
inulin
8
levan inulin
8
activity rmle3a
8
fructose
5
rmle3a
5
characterization salt-tolerated
4
salt-tolerated exo-fructanase
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!