Recently, the non-negligible role of the periosteum in bone repair has attracted the attention of researchers. In this study, poly(ε-caprolactone) (PCL)/lignin nano-fibrous membranes prepared by electrospinning are proposed as an artificial periosteum. Both in vitro and in vivo studies confirmed that PCL/lignin membranes have a pro-osteogenic effect. This effect was dependent on the lignin concentration, and there was an optimal concentration at which the membrane possessed the highest osteogenesis-potentiating activity among those tested in this study. In addition, the PCL/lignin membranes exhibited promising antibacterial properties against both E. coli and S. aureus, with high lignin concentrations corresponding to high-bactericidal activity. The prepared PCL/lignin membranes displayed promising osteogenic and antibacterial properties. With satisfactory hydrophilicity and mechanical properties, they hold great potential in serving as an artificial periosteum for bone tissue repair. This study provides both theoretical and laboratory evidence for the application of the renewable resource lignin in the repair of the periosteum and bone injuries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.137149 | DOI Listing |
Biomaterials
December 2024
Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China; Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices& Beijing Key Laboratory of Digital Stomatology & NHC Key Laboratory of Digital Stomatology & NMPA Key Laboratory for Dental Materials, Beijing, China. Electronic address:
In situ bone regeneration and vertical bone augmentation have been huge problems in clinical practice, always imposing a significant economic burden and causing patient suffering. Herein, MgZnYNd magnesium alloy rod implantation in mouse femur resulted in substantial subperiosteal new bone formation, with osteoimmunomodulation playing a pivotal role. Abundant macrophages were attracted to the subperiosteal new bone region and proved to be the most important regulation cells for bone regeneration.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmacology, School of Medicine, University of Mostar, 88000 Mostar, Bosnia and Herzegovina.
Background: This is a novel rat study using native peptide therapy, focused on reversing quadriceps muscle-to-bone detachment to reattachment and stable gastric pentadecapeptide BPC 157 per-oral therapy for shared muscle healing and function restoration.
Methods: Pharmacotherapy recovering various muscle, tendon, ligament, and bone lesions, and severed junctions (i.e.
Georgian Med News
November 2024
1Department of biology, College of Education for Women, University of Kirkuk, Iraq.
Background: Botulinum toxin is an attenuated neurotoxin of Clostridium Botulinum gram positive bacterial, which is used in medication sialorrhea, cervical dystonia, hyperhidrosis and non-surgical cosmetic operation (aesthetic) such as facial wrinkles and reduced the bulky appearance hypertrophied of masseter muscle. This study was designed to revealed the effect of zygomiticus inoculation of botulinum toxin B in zygomatic muscle of rats on zygomatic bone.
Methods: A total of 25 male albino rats (200-260 gm) were injected facial intramuscular by a single dose of 2.
Oper Orthop Traumatol
January 2025
Klinik für Orthopädie und Unfallchirurgie, Martin-Luther-Krankenhaus Berlin, Caspar-Theyss-Str. 27-33, 14193, Berlin, Deutschland.
Objective: Lengthening of the patellar tendon to normalize patellar height and improve knee flexion deficits.
Indications: Flexion deficits in combination with patella baja (Caton index < 0.6).
Adv Healthc Mater
January 2025
Center for Musculoskeletal Research, School of Medicine and Dentistry, University of Rochester, Rochester, NY, 14642, USA.
The Masquelet technique that combines a foreign body reaction (FBR)-induced vascularized tissue membrane with staged bone grafting for reconstruction of segmental bone defect has gained wide attention in Orthopedic surgery. The success of Masquelet hinges on its ability to promote formation of a "periosteum-like" FBR-induced membrane at the bone defect site. Inspired by Masquelet's technique, here a novel approach is devised to create periosteum mimetics from decellularized extracellular matrix (dECM), engineered in vivo through FBR, for reconstruction of segmental bone defects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!