Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural polymer-based hydrogels have found extensive use in flexible sensing, energy storage, and other fields because of their environmental sustainability and biocompatibility. Nonetheless, numerous challenges persist in the development of hydrogels with outstanding conductivity solely from natural polymers. Herein, we have successfully synthesized hydrogels based on natural polymer (tragacanth gum) and ionic liquids (1-vinyl-3-ethylimidazolium bromide) using a convenient and efficient one-step ionizing radiation method (TG/PIL hydrogels). The TG/PIL hydrogels exhibit high ionic conductivity (7.1 S m at 25 °C), and can be used for multimodal sensors, including strain and temperature sensors. It has exceptional capabilities in monitoring human motor behavior, capturing subtle facial expressions and pulses beat. TG/PIL hydrogel can also accurately sense changes in the temperature of the external environment, and have significant thermal sensitivity within the range of 40 to 60 °C (-3.22 % /°C). Furthermore, the high conductivity of TG/PIL hydrogels enables them to exhibit outstanding performance in supercapacitor electrolytes, it has good stability in a certain load bearing range, temperature range, folding angle range. This work offers a straightforward technique for creating a multimodal hydrogel sensor, with promising applications in flexible wearable devices, energy storage, and beyond.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.137299 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!