Mixed surfactants improve the enzymatic hydrolysis of lignocellulosic substrates by enhancing cellulase stability against heat, pH, shear, and air-liquid interface stress. Under conditions of multiple factorial stresses (50 °C, pH 4.8, 180 rpm, and 15.5 cm air-liquid interface), cellulase with ternary surfactants (Tween 60/Triton X-114/CTAB, the molar ratio 14:5.5:1) retained 84 % of its activity after 48 h of incubation, representing 1.15 and 1.29 folds that of the cellulase activity with the single Tween 60 and with no surfactants, respectively. This is attributed to the fact that ternary surfactants possess better rheology modulation and air-liquid interface competitiveness. In addition, the computational approach demonstrated that the ternary surfactants were capable of forming stronger hydrophobic and hydrogen-bond interactions with cellulase enzymes, thus maintaining its secondary structure and preventing the detrimental α-helix to β-sheet transformation known to compromise cellulase activity. This synergy offers valuable insights into surfactant-cellulase interactions and supports efficient enzymatic hydrolysis in biorefineries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2024.131756 | DOI Listing |
In recent years, a global increase in allergy incidence following chemical exposure has been observed. While the process of skin sensitization is well characterized through the adverse outcome pathway (AOP) framework, the immunological mechanisms underlying respiratory sensitization remain less well understood. Respiratory sensitizers are classified as substances of very high concern (SVHC) under the European Union (EU) regulation for the registration, evaluation, authorization and restriction of chemicals (REACH), emphasizing the importance of evaluating respiratory tract sensitization as a critical hazard.
View Article and Find Full Text PDFCytotherapy
December 2024
School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand. Electronic address:
Background: One of the key functions of human skin is to provide a barrier, protecting the body from the surrounding environment and maintaining homeostasis of the internal environment. A mature, stratified epidermis is critical to achieve skin barrier function and is particularly important when producing skin grafts in vitro for wound treatment. For decades epidermal stratification has been achieved in vitro by culturing keratinocytes at an air-liquid interface, triggering proliferating basal keratinocytes to differentiate and form all epidermal layers.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot, Israel.
Active matter, from motile bacteria to animals, can exhibit striking collective and coherent behavior. Despite significant advances in understanding the behavior of homogeneous systems, little is known about the self-organization and dynamics of heterogeneous active matter, such as complex and diverse bacterial communities. Under oxygen gradients, many bacterial species swim towards air-liquid interfaces in auto-organized, directional bioconvective flows, whose spatial scales exceed the cell size by orders of magnitude.
View Article and Find Full Text PDFBiol Open
January 2025
Department of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe-dori, Mizuho-ku, Nagoya 467-8603, Japan.
Reproducing intestinal cells in vitro is important in pharmaceutical research and drug development. Caco-2 cells and human iPS cell-derived intestinal epithelial cells are widely used, but few evaluation systems can mimic the complex crypt-villus-like structure. We attempted to generate intestinal cells mimicking the three-dimensional structure from human iPS cells.
View Article and Find Full Text PDFRespir Res
January 2025
Department of Pulmonology, Leiden University Medical Centre (LUMC), Albinusdreef 2, C2-R-062, 2333 ZA, Leiden, The Netherlands.
Objective: Radiation-induced lung injury (RILI) is a serious side-effect of radiotherapy for lung cancer, in which effects on the normal lung epithelium may play a key role. Since these effects are incompletely understood, the aim of the present study was to evaluate the effect of ionizing radiation (IR) on cultured well-differentiated primary bronchial epithelial cells (PBEC) with a focus on cytotoxicity, barrier formation, inflammation and epithelial progenitor function.
Materials And Methods: PBEC were cultured at the Air-Liquid Interface (ALI-PBEC) to allow mucociliary differentiation.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!