Pyriproxyfen exposure compromises cocoon spinning and damages the Malpighian tubules of the nontarget predator Ceraeochrysa claveri (Neuroptera: Chrysopidae).

Environ Pollut

Laboratory of Insects, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Research Center "Electron Microscopy Center", Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil. Electronic address:

Published: December 2024

Pyriproxyfen has been extensively employed in the Neotropical region for agricultural pest management and insect vectors. However, measuring the sublethal and indirect effects of this active ingredient on nontarget organisms, such as lacewings, is important. Using morphological tools on target organs, we can evaluate these effects and use them as biomarkers for future ecotoxicological studies. Here, we investigated the effects of pyriproxyfen exposure on cocoon spinning and Malpighian tubules in Ceraeochrysa claveri adults. For this purpose, first-instar C. claveri larvae were orally exposed to Diatraea saccharalis egg clusters treated with pyriproxyfen in a solution of 50 or 100 mg a.i. L throughout the larval stage. Insecticide exposure decreases predator survival, mainly in the prepupal and pupal stages, along with changes in the internal and external surfaces and thickness of the cocoon wall. Histopathological and ultrastructural injuries, including cytoplasmic vacuolization, loss of microvilli and a reduction in neutral glycoconjugates, were observed in Malphigian tubule cells of adults (≤24 h old). These changes indicate toxicological effects on Malpighian tubules that in lacewing involve cocoon spinning during metamorphosis and, in the adult stage, act in physiological processes of excretion and osmoregulation. Furthermore, it can affect the efficiency of the cocoon in protecting the specimen during metamorphosis against natural enemies and environmental factors. This organ has demonstrated its applicability as a biomarker for assessing the multisystemic effects of insecticides, thereby assisting in future risk assessments aimed at conserving nontargeted specimens.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2024.125255DOI Listing

Publication Analysis

Top Keywords

cocoon spinning
12
malpighian tubules
12
pyriproxyfen exposure
8
ceraeochrysa claveri
8
cocoon
5
effects
5
pyriproxyfen
4
exposure compromises
4
compromises cocoon
4
spinning damages
4

Similar Publications

High Absorption and Elasticity of a Novel Transgenic Silk with Egg Case Silk Protein from .

Int J Mol Sci

November 2024

College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China.

Spider silk is part of a special class of natural protein fibers that have high strength and toughness: these materials have excellent comprehensive properties that are not found in other natural fibers (including silk) or most synthetic fibers. Spider egg case filaments have good hardness, can resist water, can protect spider eggs from external threats, have a significantly high initial modulus and high moisture absorption rate, and are expected to be used as a new generation of environmentally friendly natural polymer fibers and biomaterials. However, spiders are predatory and difficult to rear in large numbers, and it is also difficult to obtain spider egg case filaments in large quantities.

View Article and Find Full Text PDF

Pyriproxyfen exposure compromises cocoon spinning and damages the Malpighian tubules of the nontarget predator Ceraeochrysa claveri (Neuroptera: Chrysopidae).

Environ Pollut

December 2024

Laboratory of Insects, Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil; Research Center "Electron Microscopy Center", Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil. Electronic address:

Pyriproxyfen has been extensively employed in the Neotropical region for agricultural pest management and insect vectors. However, measuring the sublethal and indirect effects of this active ingredient on nontarget organisms, such as lacewings, is important. Using morphological tools on target organs, we can evaluate these effects and use them as biomarkers for future ecotoxicological studies.

View Article and Find Full Text PDF

Identification and functional study of Fib-L, a major silk fibroin gene component in rice leaf folders.

Insect Mol Biol

October 2024

Institute of Entomology, Guizhou Provincial Key Laboratory for Agricultural Pest Management of the Mountainous Region, Guizhou University, Guiyang, Guizhou, China.

The rice leaf folder, Cnaphalocrocis medinalis (Lepidoptera: Pyralidae), is a major migratory pest in rice agriculture. This pest is characterised by its larvae's ability to fold rice leaves using silk, a behaviour that culminates in the formation of a silken cocoon during the pupal stage. The fibroin light chain (CmFib-L) gene is crucial for silk production, yet its specific function in C.

View Article and Find Full Text PDF

Silkworm was the first domesticated insect and has important economic value. It has also become an ideal model organism with applications in genetic and expression studies. In recent years, the use of transgenic strategies has made the silkworm silk gland an attractive bioreactor for the production of recombinant proteins, in particular, -mediated transgenes.

View Article and Find Full Text PDF

Metabolic and transcriptomic characterization of summer and winter dormancy in the solitary bee, Osmia lignaria.

Insect Biochem Mol Biol

March 2024

Edward T. Schafer Agricultural Research Center, U.S. Department of Agriculture/Agricultural Research Service, 1616 Albrecht Boulevard North, Fargo, ND, 58102, USA.

The solitary bee Osmia lignaria is a native pollinator in North America with growing economic importance. The life cycle of O. lignaria provides a unique opportunity to compare the physiological and molecular mechanisms underlying two ecologically contrasting dormancies within the same species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!