Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Natural attenuation of naphthalene (NAP) in riverbank filtration zones is vital for maintaining water quality and is affected by dissolved organic matter (DOM) and iron minerals. However, the effects of DOM and iron minerals on the attenuation of NAP remain unclear. In this study, the attenuation mechanisms of NAP under the influence of DOM and iron minerals were explored in a riverside source area. Field dynamic monitoring data revealed that the NAP concentration in groundwater is mainly influenced by DOM, effective bound‑iron, and the intensity of river water infiltration recharge. Column experiments indicated that DOM with α-FeO or α-FeO(OH) reduced medium permeability by 8.16 % or 6.85 %, respectively, increasing water retention time. However, they had different effects on the attenuation of NAP. The coexistence of α-FeO and DOM enhanced NAP attenuation capacity by 9.13 %-45.91 %, while α-FeO(OH) and DOM reduced it by -13.25 % to -24.13 %. These effects were attributed to changes in the medium permeability, particle size, secondary mineral formation, and microbial community structure. Specifically, α-FeO and DOM reduced medium permeability, increasing the adsorption and biodegradation reaction time of NAP, and promoted secondary mineral (FeCO) formation, increasing the adsorption capacity of medium for NAP, while α-FeO(OH) and DOM underwent cementation, resulting in larger particles and reduced adsorption capacity for NAP. Additionally, α-FeO(OH) and DOM promoted Shewanlla growth, inhibiting NAP attenuation by competing with NAP-degrading bacteria. These findings improve the understanding of the natural attenuation of polycyclic aromatic hydrocarbons (PAHs) in riverbank filtration, offering a basis for evaluating and controlling PAH pollution risks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177410 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!