Human DNA ligase 1 (LIG1) performs the final step in DNA repair and recombination pathways by sealing DNA breaks, and it functions as the main replicative ligase. Hypomorphic LIG1 variants R771W and R641L cause immune deficiencies in LIG1 Syndrome patients. In vitro these LIG1 variants have decreased catalytic efficiency and increased abortive ligation and it is not known if either biochemical defect is sufficient on its own to cause immune deficiency. We investigated the enzymatic activity of several new candidate LIG1 Syndrome variants chosen based on their structural proximity to known clinical variants, low minor allele frequency (MAF), high level of conservation, and concurrence in patients with similar symptoms as LIG1 Syndrome patients. The R305Q substitution is in the DNA binding domain, R768W is in the OB-fold domain, and R641S is in the nucleotidyltransferase domain. Biochemical characterization confirmed deficiencies in ligase activity for all three variants, but also revealed marked differences in comparison to the known LIG1 Syndrome variants. Both the R305Q and R768W substitutions increase the K for DNA and decrease the catalytic efficiency, however, neither exhibit elevated levels of abortive ligation. In contrast, the R641S variant exhibits a greater impairment of activity as well as a more pronounced level of abortive ligation compared to the known LIG1 Syndrome variant, R641L. This work expands the number of LIG1 alleles that are likely candidates for LIG1 Syndrome, and it raises the question of whether distinct enzymatic deficiencies in LIG1 cause unique clinical impacts in patients harboring these alleles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbc.2024.107957DOI Listing
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11648212PMC

Publication Analysis

Top Keywords

lig1 syndrome
24
abortive ligation
12
lig1
11
dna ligase
8
lig1 variants
8
deficiencies lig1
8
syndrome patients
8
catalytic efficiency
8
syndrome variants
8
dna
6

Similar Publications

Human DNA ligase 1 (LIG1) performs the final step in DNA repair and recombination pathways by sealing DNA breaks, and it functions as the main replicative ligase. Hypomorphic LIG1 variants R771W and R641L cause immune deficiencies in LIG1 Syndrome patients. In vitro these LIG1 variants have decreased catalytic efficiency and increased abortive ligation and it is not known if either biochemical defect is sufficient on its own to cause immune deficiency.

View Article and Find Full Text PDF

In mammalian cells, DNA ligase 1 (LIG1) functions as the primary DNA ligase in both genomic replication and single-strand break repair. Several reported mutations in human LIG1, including R305Q, R641L, and R771W, cause LIG1 syndrome, a primary immunodeficiency. While the R641L and R771W mutations, respectively located in the nucleotidyl transferase and oligonucleotide binding domains, have been biochemically characterized and shown to reduce catalytic efficiency, the recently reported R305Q mutation within the DNA binding domain (DBD) remains mechanistically unexplored.

View Article and Find Full Text PDF

Mammalian DNA ligases; roles in maintaining genome integrity.

J Mol Biol

January 2024

University of New Mexico Comprehensive Cancer Center and the Departments of Internal Medicine, and Molecular Genetics & Microbiology, University of New Mexico Health Sciences Center, United States. Electronic address:

The joining of breaks in the DNA phosphodiester backbone is essential for genome integrity. Breaks are generated during normal processes such as DNA replication, cytosine demethylation during differentiation, gene rearrangement in the immune system and germ cell development. In addition, they are generated either directly by a DNA damaging agent or indirectly due to damage excision during repair.

View Article and Find Full Text PDF

Background Aicardi-Goutieres syndrome (AGS) is a genetic disorder that has variable manifestations including neurological, immunological, and sometimes other system involvement in various combinations. Considering the high genetic and clinical diversity of AGS and the importance of RNASEH2 complex in the biological system, it is important to take a systematic approach to delineate the genetic diagnosis and impact of missense mutations. Methods Clinical targeted gene sequencing followed by Sanger validation was performed in an individual with the clinical features of AGS.

View Article and Find Full Text PDF

Unchanged PCNA and DNMT1 dynamics during replication in DNA ligase I-deficient cells but abnormal chromatin levels of non-replicative histone H1.

Sci Rep

March 2023

Cancer Research Facility, Departments of Internal Medicine and Molecular Genetics & Microbiology, University of New Mexico Comprehensive Cancer Center, University of New Mexico Health Sciences Center, 915 Camino de Salud, 1 University of New Mexico, Albuquerque, NM, 87131, USA.

DNA ligase I (LigI), the predominant enzyme that joins Okazaki fragments, interacts with PCNA and Pol δ. LigI also interacts with UHRF1, linking Okazaki fragment joining with DNA maintenance methylation. Okazaki fragments can also be joined by a relatively poorly characterized DNA ligase IIIα (LigIIIα)-dependent backup pathway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!